论文标题
社区问题回答实体通过利用辅助数据链接
Community Question Answering Entity Linking via Leveraging Auxiliary Data
论文作者
论文摘要
社区问题回答(CQA)平台包含大量CQA文本(即与问题相对应的问题和答案),其中命名实体无处不在。在本文中,我们定义了CQA实体链接(CQAEAL)的新任务,因为它链接了文本实体,从CQA文本中链接了及其在知识库中的相应实体的检测到。这项任务可以促进许多下游应用程序,包括专家发现和知识库丰富。传统实体链接方法主要集中于链接新闻文档中的实体,并且在CQAEL的这一新任务上表现出色,因为它们无法有效利用CQA平台中涉及的各种信息的辅助数据来帮助实体链接,例如并行答案和两种类型的元数据(即主题标签和用户)。为了解决这个关键问题,我们提出了一个基于变压器的新型框架,以有效利用不同种类的辅助数据提供的知识来促进链接性能。我们通过广泛的实验比最新的实体链接方法来验证框架的优越性。
Community Question Answering (CQA) platforms contain plenty of CQA texts (i.e., questions and answers corresponding to the question) where named entities appear ubiquitously. In this paper, we define a new task of CQA entity linking (CQAEL) as linking the textual entity mentions detected from CQA texts with their corresponding entities in a knowledge base. This task can facilitate many downstream applications including expert finding and knowledge base enrichment. Traditional entity linking methods mainly focus on linking entities in news documents, and are suboptimal over this new task of CQAEL since they cannot effectively leverage various informative auxiliary data involved in the CQA platform to aid entity linking, such as parallel answers and two types of meta-data (i.e., topic tags and users). To remedy this crucial issue, we propose a novel transformer-based framework to effectively harness the knowledge delivered by different kinds of auxiliary data to promote the linking performance. We validate the superiority of our framework through extensive experiments over a newly released CQAEL data set against state-of-the-art entity linking methods.