论文标题

通过羔羊波信号的分解,内容丰富的贝叶斯工具,用于损坏定位

Informative Bayesian Tools for Damage Localisation by Decomposition of Lamb Wave Signals

论文作者

Haywood-Alexander, Marcus, Dervilis, Nikolaos, Worden, Keith, Dobie, Gordon, Rogers, Timothy J.

论文摘要

超声波引导的波浪为结构性健康监测和非破坏性评估提供了一种方便,实用的方法,这要归功于一些明显的优势。指导波,特别是羔羊波,可通过利用传播和反射特征的先验知识来定位损害。典型的定位方法利用从损坏中发出或反射的波的到达时间,其中最简单涉及三角剖分。在没有损坏的情况下将测量信号分解到直接从驱动源传播的预期波和本文称为标称波的情况下是有用的。这种分解允许确定从损害,边界或其他局部不均匀性反射的波。以前的分解方法利用了准确的分析模型,但是复杂材料和结构的分解方法存在差距。这里显示了一种新方法,该方法使用贝叶斯方法分解单源信号,该信号具有定量预期信号的不确定性的优势。此外,该方法会产生固有的参数特征,这些特征与引导波的已知物理相关。在本文中,使用局部相互作用仿真方法,在小铝板中的引导波传播模拟中的数据中证明了分解方法,以损坏和未损坏的情况。分解方法的分析以三种方式进行;检查单个分解信号,跟踪沿传播距离固有生成的参数特征,并在本地化策略中使用方法。发现贝叶斯分解在上述评估标准方面非常有效。在许多传感器配置中,在本地化方法中使用这些波的使用将估计值准确地返回到1mm以内。

Ultrasonic guided waves offer a convenient and practical approach to structural health monitoring and non-destructive evaluation, thanks to some distinct advantages. Guided waves, in particular Lamb waves, can be used to localise damage by utilising prior knowledge of propagation and reflection characteristics. Typical localisation methods make use of the time of arrival of waves emitted or reflected from the damage, the simplest of which involves triangulation. It is useful to decompose the measured signal into the expected waves propagating directly from the actuation source in the absence of damage, and for this paper referred to as nominal waves. This decomposition allows for determination of waves reflected from damage, boundaries or other local inhomogeneities. Previous decomposition methods make use of accurate analytical models, but there is a gap in methods of decomposition for complex materials and structures. A new method is shown here which uses a Bayesian approach to decompose single-source signals, which has the advantage of quantification of the uncertainty of the expected signal. Furthermore, the approach produces inherent parametric features which correlate to known physics of guided waves. In this paper, the decomposition method is demonstrated on data from a simulation of guided wave propagation in a small aluminium plate, using the local interaction simulation approach, for a damaged and undamaged case. Analysis of the decomposition method is done in three ways; inspect individual decomposed signals, track the inherently produced parametric features along propagation distance, and use method in a localisation strategy. The Bayesian decomposition was found to work well for the assessment criteria mentioned above. The use of these waves in the localisation method returned estimates accurate to within 1mm in many sensor configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源