论文标题

关于纠正代码的错误数量

On the number of error correcting codes

论文作者

Dong, Dingding, Mani, Nitya, Zhao, Yufei

论文摘要

我们表明,对于固定的$ q $,$ q $ -ary $ t $ - 校正$ n $的校正代码最多为$ 2^{(1 + o(1))h_q(n,t)} $ for ALL $ t \ leq(1- Q^{ - 1}) $ h_q(n,t)= q^n / v_q(n,t)$是限制限制,$ v_q(n,t)$是半径$ t $ t $ hamming ball的基数。这证明了Balogh,Treglown和Wagner的猜想,他们显示了$ t = O(n^{1/3}(\ log n)^{ - 2/3})$的结果。

We show that for a fixed $q$, the number of $q$-ary $t$-error correcting codes of length $n$ is at most $2^{(1 + o(1)) H_q(n,t)}$ for all $t \leq (1 - q^{-1})n - C_q\sqrt{n \log n}$ (for sufficiently large constant $C_q$), where $H_q(n, t) = q^n / V_q(n,t)$ is the Hamming bound and $V_q(n,t)$ is the cardinality of the radius $t$ Hamming ball. This proves a conjecture of Balogh, Treglown, and Wagner, who showed the result for $t = o(n^{1/3} (\log n)^{-2/3})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源