论文标题

加权$ L_P $ - 抛物线偏微分方程与时间可测量的伪差异操作员

A weighted $L_p$-regularity theory for parabolic partial differential equations with time measurable pseudo-differential operators

论文作者

Choi, Jae-Hwan, Kim, Ildoo

论文摘要

我们获得以下cauchy问题的存在,独特性和规律性估计\ begin {equation} \ label {ab eqn} \ begin {case} \ partial_t u(t,x)=ψ(t,-i \ nabla)u(t,x)+f(t,x,x),\ quad&(t,x)\ in(0,t)\ times \ times \ times \ times \ mathbb {r}^d,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \(0,x)= 0,x) \ end {equation} in(muckenhoupt)加权$ l_p $ - 带有时间测量的pseudo-differential operators \ begin \ begin {equation} \ label {ab op}ψ(t,-i \ nabla)u(t,x):= \ Mathcal {f}^{ - 1} \ left [ψ(t,\ cdot)\ Mathcal {f} [f} [f} [u](t,\ cdot)\ right](x)(x)。 \ end {equation}更确切地说,我们发现符号$ψ(t,ξ)$的足够条件(尤其取决于符号相对于$ξ$的平滑度),以确保方程在(muckenhoupt)中得到充分含量(Muckenhoupt)加权$ L_P $ -Spaces。在这里,符号$ψ(t,ξ)$仅与$ t $相对于$ t $来测量,而相对于$ξ$的$ψ(t,ξ)$的足够平滑度的特征是每个重量的属性。特别是,我们证明存在正常数$ n $,以便对于任何解决方案$ u $ to equation,\ begin {equation} \ label {ab est} \ int_0^t \ int _ {\ mathbb {r}^d} |(-Δ) \ int _ {\ mathbb {r}^d} | f(t,x)|^p(t^2 + | x |^2)^{α/2} \ Mathrm {d} x \ Mathrm {d} \ label {ab est 2} \ int_0^t \ left(\ int _ {\ Mathbb {r}^d} |(-ux) t^{α_1} \ mathrm {d} t \ leq n \ int_0^t \ left(\ int _ {\ mathbb {\ mathbb {r}^d} | f(t,x,x)|^p | x | x | x |^|^|^|^{α_2} {α_2}} \ MATHRM {D} t^{α_1} \ mathrm {d} t,\ end {qore}其中$ p,q \ in(1,\ infty)$,$ -d-1 <α<(d+1)(p-1)(p-1)$,$ -1 <α_1<α_1<q-1 <q-1 $,$ -dd <q-d <α_2<α_2<d(p-1) $ψ(t,-i \ nabla)$。

We obtain the existence, uniqueness, and regularity estimates of the following Cauchy problem \begin{equation}\label{ab eqn} \begin{cases} \partial_t u(t,x)=ψ(t,-i\nabla)u(t,x)+f(t,x),\quad &(t,x)\in(0,T)\times\mathbb{R}^d,\\ u(0,x)=0,\quad & x\in\mathbb{R}^d \end{cases} \end{equation} in (Muckenhoupt) weighted $L_p$-spaces with time-measurable pseudo-differential operators \begin{equation} \label{ab op} ψ(t,-i\nabla)u(t,x):=\mathcal{F}^{-1}\left[ψ(t,\cdot)\mathcal{F}[u](t,\cdot)\right](x). \end{equation} More precisely, we find sufficient conditions of the symbol $ψ(t,ξ)$ (especially depending on the smoothness of the symbol with respect to $ξ$) to guarantee that equation is well-posed in (Muckenhoupt) weighted $L_p$-spaces. Here the symbol $ψ(t,ξ)$ is merely measurable with respect to $t$, and the sufficient smoothness of $ψ(t,ξ)$ with respect to $ξ$ is characterized by a property of each weight. In particular, we prove the existence of a positive constant $N$ such that for any solution $u$ to the equation, \begin{equation} \label{ab est} \int_0^T \int_{\mathbb{R}^d} |(-Δ)^{γ/2} u(t,x) |^p (t^2 + |x|^2)^{α/2} \mathrm{d}x\mathrm{d}t \leq N\int_0^T \int_{\mathbb{R}^d} |f(t,x)|^p (t^2 + |x|^2)^{α/2} \mathrm{d}x\mathrm{d}t \end{equation} and \begin{equation} \label{ab est 2} \int_0^T \left(\int_{\mathbb{R}^d} |(-Δ)^{γ/2} u(t,x) |^p |x|^{α_2} \mathrm{d}x \right)^{q/p} t^{α_1}\mathrm{d}t \leq N\int_0^T \left(\int_{\mathbb{R}^d} |f(t,x) |^p |x|^{α_2} \mathrm{d}x \right)^{q/p} t^{α_1}\mathrm{d}t, \end{equation} where $p,q\in(1,\infty)$, $-d-1<α< (d+1)(p-1)$, $-1 < α_1 < q-1$, $-d <α_2< d(p-1)$, and $γ$ is the order of the operator $ψ(t,-i\nabla)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源