论文标题

揭示相对的时机抖动,以反击繁殖所有正常分散(CANDI)双重弹纤维激光器

Unveiling the relative timing jitter in counter propagating all normal dispersion (CANDi) dual-comb fiber laser

论文作者

Prakash, Neeraj, Huang, Shu-Wei, Li, Bowen

论文摘要

反向传输全非正常色散(CANDI)纤维激光器是一种新兴的高能量单腔双重炸弹激光源。其相对的时机抖动(RTJ)是双弯曲正时精度和光谱分辨率的关键参数,尚未经过全面研究。在本文中,我们将最新的Candi纤维激光脉冲能量从1 NJ提高到8 NJ。然后,我们引入了一种新颖的无参考RTJ表征技术,该技术首次以飞秒精度提供了射击测量能力。测量噪声底底达到1.6x10-7 FS2/Hz,相应的集成测量精度仅为1.8 fs(1 kHz,20 MHz)。有了这个新的特征工具,我们能够详细研究Candi Laser RTJ的物理起源。我们首先验证腔长的波动不会导致RTJ。然后,我们测量集成的RTJ为39 fs(1 kHz,20 MHz),并确定泵的相对强度噪声(RIN)是负责其的主要因素。特别是,泵RIN通过Gordon-Haus效应耦合到RTJ。最后,讨论了减少自由运行的Candi Laser RTJ的解决方案。这项工作提供了一个一般指南,以提高紧凑型单腔双重轰炸系统(如Candi Laser)的性能,从而使各种双重bomb应用受益。

Counter-propagating all-normal dispersion (CANDi) fiber laser is an emerging high-energy single-cavity dual-comb laser source. Its relative timing jitter (RTJ), a critical parameter for dual-comb timing precision and spectral resolution, has not been comprehensively investigated. In this paper, we enhance the state-of-the-art CANDi fiber laser pulse energy from 1 nJ to 8 nJ. We then introduce a novel reference-free RTJ characterization technique that provides shot-to-shot measurement capability at femtosecond precision for the first time. The measurement noise floor reaches 1.6x10-7 fs2/Hz, and the corresponding integrated measurement precision is only 1.8 fs (1 kHz, 20 MHz). With this new characterization tool, we are able to study the physical origin of CANDi laser's RTJ in detail. We first verify that the cavity length fluctuation does not contribute to the RTJ. Then we measure the integrated RTJ to be 39 fs (1 kHz, 20 MHz) and identify the pump relative intensity noise (RIN) to be the dominant factor responsible for it. In particular, pump RIN is coupled to the RTJ through the Gordon-Haus effect. Finally, solutions to reduce the free-running CANDi laser's RTJ are discussed. This work provides a general guideline to improve the performance of compact single-cavity dual-comb systems like CANDi laser benefitting various dual-comb applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源