论文标题

高阶分数laplacians的振荡现象

Oscillatory Phenomena for Higher-Order Fractional Laplacians

论文作者

Abatangelo, Nicola, Jarohs, Sven

论文摘要

我们收集了一些高阶分数拉普拉斯人$(-δ)^s $,$ s> 1 $的特殊性,特别注意(1,2)$ in(1,2)$的范围,这表明其振荡性质。其中包括极化和pólya-szegö的失败,以及具有签名第一个特征功能的域的明确例子。尽管存在这些波动的行为,但我们证明了Faber-Krahn的不平等仍然适用于任何$ s> 1 $的尺寸。

We collect some peculiarities of higher-order fractional Laplacians $(-Δ)^s$, $s>1$, with special attention to the range $s\in(1,2)$, which show their oscillatory nature. These include the failure of the polarization and Pólya-Szegö inequalities and the explicit example of a domain with sign-changing first eigenfunction. In spite of these fluctuating behaviours, we prove how the Faber-Krahn inequality still holds for any $s>1$ in dimension one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源