论文标题

胸部X射线图像上的Covid-19严重性分类

COVID-19 Severity Classification on Chest X-ray Images

论文作者

Sagar, Aditi, Swaraj, Aman, Verma, Karan

论文摘要

与人工智能(AI)方法结合使用的生物医学成像分析已被证明是非常有价值的,以诊断Covid-19。到目前为止,已经使用了各种分类模型来诊断Covid-19。但是,尚未根据患者的严重程度对患者进行分类。在这项工作中,我们根据感染的严重程度对共证图像进行了分类。首先,我们使用中位过滤器和直方图均衡预处理X射线图像。然后,使用SMOTE技术来增强增强的X射线图像,以实现平衡数据集。然后使用预训练的RESNET50,VGG16模型和SVM分类器进行特征提取和分类。分类模型的结果证实,与替代方案相比,与胸部X射线图像相比,Resnet-50模型在准确性(95%),召回(0.94)和F1得分(0.92)和精度(0.91)方面产生了显着的分类结果(95%)。

Biomedical imaging analysis combined with artificial intelligence (AI) methods has proven to be quite valuable in order to diagnose COVID-19. So far, various classification models have been used for diagnosing COVID-19. However, classification of patients based on their severity level is not yet analyzed. In this work, we classify covid images based on the severity of the infection. First, we pre-process the X-ray images using a median filter and histogram equalization. Enhanced X-ray images are then augmented using SMOTE technique for achieving a balanced dataset. Pre-trained Resnet50, VGG16 model and SVM classifier are then used for feature extraction and classification. The result of the classification model confirms that compared with the alternatives, with chest X-Ray images, the ResNet-50 model produced remarkable classification results in terms of accuracy (95%), recall (0.94), and F1-Score (0.92), and precision (0.91).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源