论文标题

从单个原子中有效地生成纠缠的多光子图状态

Efficient generation of entangled multi-photon graph states from a single atom

论文作者

Thomas, Philip, Ruscio, Leonardo, Morin, Olivier, Rempe, Gerhard

论文摘要

纠缠是一个有力的概念,具有巨大的科学和技术进步潜力。现代研究中的一个主要重点是将纠缠状态的产生和控制从很少的量他扩展到许多量子位,并保护它们免受腐蚀。光子光子起着重要的作用,因为这些Qubit载体自然强大且易于操纵。但是,迄今为止,创建光子纠缠的最成功的技术本质上是概率,因此受到严重的可伸缩性限制。在这里,我们通过在腔中使用单个内存原子实现确定性协议来避免这些问题。我们将控制的单光子发射与定制的原子量子旋转旋转相结合,以有效地生长高达14个光子的Greenberger-Horne-Zeilinger状态,并分别由76(6)%和56(4)%的忠诚度限制为12个光子的线性群集状态。由于每个光子的来源对检测效率为43.18(7)%,我们每分钟大约测量一次大状态,比以前的任何实验更快。将来,该速率可以进一步提高,该方案可以扩展到一个空腔中的两个原子,或者可以机械耦合的几个来源,以产生较高维的群集状态。克服概率方案遇到的光子纠缠产生的局限性,我们的结果可能为基于可扩展测量的量子计算和通信提供了一种方法。

Entanglement is a powerful concept with an enormous potential for scientific and technological advances. A central focus in modern research is to extend the generation and control of entangled states from few to many qubits, and protect them against decoherence. Optical photons play a prominent role as these qubit carriers are naturally robust and easy to manipulate. However, the most successful technique to date for creating photonic entanglement is inherently probabilistic and therefore subject to severe scalability limitations. Here we avoid these by implementing a deterministic protocol with a single memory atom in a cavity. We interleave controlled single-photon emissions with tailored atomic qubit rotations to efficiently grow Greenberger-Horne-Zeilinger states of up to 14 photons and linear cluster states of up to 12 photons with a fidelity lower bounded by 76(6)% and 56(4)%, respectively. Thanks to a source-to-detection efficiency of 43.18(7)% per photon we measure these large states about once every minute, orders of magnitude faster than in any previous experiment. In the future, this rate could be increased even further, the scheme could be extended to two atoms in a cavity, or several sources could be quantum mechanically coupled, to generate higher-dimensional cluster states. Overcoming the limitations encountered by probabilistic schemes for photonic entanglement generation, our results may offer a way towards scalable measurement-based quantum computation and communication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源