论文标题

(un)扰动的第一个painlevé方程式的指数式渐近渐近渐近差异和数字

Exponentially-improved asymptotics and numerics for the (un)perturbed first Painlevé equation

论文作者

Daalhuis, Adri B. Olde

论文摘要

扰动的第一个painlevé方程的解决方案$ y“ = 6y^2-x^μ$,$μ> -4 $,由自由常数$ c $唯一确定,在完整的$ x $ x $ besymptotic扩展中乘以指数的小术语。给出了全面详细信息。全部详细信息,包括非线性的stokes stokes stokes stokes computiers computert computert and computimpt and computert satokations satokeations satokations。根据$ c $的不同,对于这些指数重新提高的渐进式扩展的奇异性的位置,几个数值示例。

The solutions of the perturbed first Painlevé equation $y"=6y^2-x^μ$, $μ>-4$, are uniquely determined by the free constant $C$ multiplying the exponentially small terms in the complete large $x$ asymptotic expansions. Full details are given, including the nonlinear Stokes phenomenon, and the computation of the relevant Stokes multipliers. We derive asymptotic approximations, depending on $C$, for the locations of the singularities that appear on the boundary of the sectors of validity of these exponentially-improved asymptotic expansions. Several numerical examples illustrate the power of the approximations. For the tri-tronquée solution of the unperturbed first Painlevé equation we give highly accurate numerics for the values at the origin and the locations of the zeros and poles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源