论文标题
贝叶斯推理产物的边缘后加工具有标准化流量和核密度估计器
Marginal Post Processing of Bayesian Inference Products with Normalizing Flows and Kernel Density Estimators
论文作者
论文摘要
贝叶斯分析已成为许多不同宇宙学领域的必不可少的工具,包括重力研究,宇宙微波背景以及来自宇宙黎明的21 cm信号以及其他现象中的21 cm信号。该方法提供了一种将复杂模型拟合到描述关键宇宙学和天体物理信号的数据,以及以“滋扰参数”建模的一系列污染信号和仪器效应。在本文中,我们总结了一种使用掩盖自回归流量和内核密度估计器来学习与核心科学参数相对的边缘后密度的方法。我们发现边际或“无滋利性”后代和相关的可能性具有大量应用,包括:以前棘手的边缘kullback-leibler差异和边缘贝叶斯模型维度,可能性仿真和先前的仿真计算。我们使用玩具示例,21厘米宇宙学领域的示例以及黑暗能源调查的样本演示了每个应用程序。我们讨论了如何使用诸如Kullback-Leibler Diverence和Bayesian模型维度之类的边际摘要统计数据来检查不同实验的约束功率,以及我们如何通过利用边际先验和可能性模拟器来进行有效的关节分析。我们将多功能代码包装在PIP可容纳的代码人造黄油中,以用于更广泛的科学界。
Bayesian analysis has become an indispensable tool across many different cosmological fields including the study of gravitational waves, the Cosmic Microwave Background and the 21-cm signal from the Cosmic Dawn among other phenomena. The method provides a way to fit complex models to data describing key cosmological and astrophysical signals and a whole host of contaminating signals and instrumental effects modelled with `nuisance parameters'. In this paper, we summarise a method that uses Masked Autoregressive Flows and Kernel Density Estimators to learn marginal posterior densities corresponding to core science parameters. We find that the marginal or 'nuisance-free' posteriors and the associated likelihoods have an abundance of applications including; the calculation of previously intractable marginal Kullback-Leibler divergences and marginal Bayesian Model Dimensionalities, likelihood emulation and prior emulation. We demonstrate each application using toy examples, examples from the field of 21-cm cosmology and samples from the Dark Energy Survey. We discuss how marginal summary statistics like the Kullback-Leibler divergences and Bayesian Model Dimensionalities can be used to examine the constraining power of different experiments and how we can perform efficient joint analysis by taking advantage of marginal prior and likelihood emulators. We package our multipurpose code up in the pip-installable code margarine for use in the wider scientific community.