论文标题

Malcev完成,霍奇理论和动机

Malcev Completions, Hodge Theory, and Motives

论文作者

Jacobsen, Emil

论文摘要

我们证明,在特征零的平稳,连接的多样性上,在所有局部系统的类别中,几何来源的局部系统在扩展下都是稳定的。因此,我们获得了Hain定理的(NORI)动机增强Malcev的单肌表示。 我们的方法是Tannakian,并依靠抽象标准来``Malcev Tolleseness'',这在本文的第一部分中得到了证明。给出了此标准的几个次要应用:d'Addezio-esnault的定理的替代证明,该证明说,Hodge Origin的本地系统在所有本地系统的类别中都稳定;上面提到的Hain定理的概括,这也肯定了Arapura的猜想。在合适的假设下,Lazda定理的替代证明给出了相对单位的DE RHAM基本组与特殊纤维的Unipitent de Rham基本组之间的同构。

We prove that, on a smooth, connected variety in characteristic zero admitting a rational point, local systems of geometric origin are stable under extension in the category of all local systems. As a consequence of this, we obtain a (Nori) motivic strengthening of Hain's theorem on Malcev completions of monodromy representations. Our methods are Tannakian, and rely on an abstract criterion for ``Malcev completeness'', which is proved in the first part of the paper. A couple of secondary applications of this criterion are given: an alternative proof of D'Addezio--Esnault's theorem, which says that local systems of Hodge origin are stable under extension in the category of all local systems; a generalisation of the theorem of Hain, mentioned above, which also affirms a conjecture of Arapura; and an alternative proof of a theorem of Lazda, which under suitable assumptions gives an isomorphism between the relative unipotent de Rham fundamental group and the unipotent de Rham fundamental group of the special fibre.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源