论文标题
对比度学习的目标意识抽象相关的工作产生
Target-aware Abstractive Related Work Generation with Contrastive Learning
论文作者
论文摘要
相关的工作部分是科学论文的重要组成部分,该论文在参考论文的背景下强调了目标论文的贡献。作者可以使用自动生成的相关工作部分作为草稿来节省时间和精力,以完成最终相关的工作。大多数现有相关工作部分的生成方法都依赖于提取现成的句子来对目标工作和参考论文进行比较讨论。但是,此类句子需要提前书写,并且在实践中很难获得。因此,在本文中,我们提出了一个抽象性目标感知的工作生成器(TAG),该工具可以生成由新句子组成的相关工作部分。具体而言,我们首先提出了一个目标感知图编码器,该图形用参考论文与目标纸之间的关系建模了以目标为中心的注意机制。在解码过程中,我们提出了一个层次解码器,该解码器以键形作为语义指标的图表中不同级别的节点。最后,为了产生更具信息性的相关工作,我们提出了多层次的对比优化目标,旨在最大程度地提高与参考文献生成的相关工作之间的相互信息,并使用非参考来最大程度地减少该信息。在两个公共学者数据集上进行的广泛实验表明,在自动和量身定制的人类评估方面,提出的模型对几个强大的基准进行了重大改进。
The related work section is an important component of a scientific paper, which highlights the contribution of the target paper in the context of the reference papers. Authors can save their time and effort by using the automatically generated related work section as a draft to complete the final related work. Most of the existing related work section generation methods rely on extracting off-the-shelf sentences to make a comparative discussion about the target work and the reference papers. However, such sentences need to be written in advance and are hard to obtain in practice. Hence, in this paper, we propose an abstractive target-aware related work generator (TAG), which can generate related work sections consisting of new sentences. Concretely, we first propose a target-aware graph encoder, which models the relationships between reference papers and the target paper with target-centered attention mechanisms. In the decoding process, we propose a hierarchical decoder that attends to the nodes of different levels in the graph with keyphrases as semantic indicators. Finally, to generate a more informative related work, we propose multi-level contrastive optimization objectives, which aim to maximize the mutual information between the generated related work with the references and minimize that with non-references. Extensive experiments on two public scholar datasets show that the proposed model brings substantial improvements over several strong baselines in terms of automatic and tailored human evaluations.