论文标题

定期多孔弹性体中具有应用于弹性波法规的新型屈曲模式

A novel buckling pattern in periodically porous elastomers with applications to elastic wave regulations

论文作者

Liu, Yang, Liang, Tian, Fu, Yuxin, Xie, Yu-Xin, Wang, Yue-Sheng

论文摘要

本文提出了一种新的超材料结构,该结构由带有孔涂层的定期多孔弹性体组成。该设计使我们能够通过非接触式负载来实现有限的变形。作为案例研究,我们将热载载量应用于孔涂层,并进行有限元分析,以探测不稳定性和相关的语音特性。事实证明,可以在平面支架的设置下诱导一种新型的屈曲模式,以保留管状结构中的表面皱纹的性质,并且与在柔软的多孔弹性体中的传统弯曲曲线相比,获得了较小的单位电池尺寸。特别是,随着宏观平均应变的增加,这种屈曲模式能够在不同频率范围内产生几个带镜。我们进一步引入了金属核心作为局部谐振器,并且更新的超材料允许使用低频带隙,可以通过简化的理论模型来估算带隙的宽度。随着结构中更多的自由参数,我们进行了详细的参数研究,以阐明涂层和矩阵之间的模量比的影响,孔隙率,核心半径以及宏观均值平均应力对屈曲起始和带gap的演变的影响。值得注意的是,较硬的表面涂层容易提高结构的稳定性,这与膜/底物双层中的现有结果相反。可以预期,当前的研究可能会阐明对多孔弹性体中模式形成和波浪操作的新见解。

This paper proposes a new metamaterial structure consisting of a periodically porous elastomer with pore coatings. This design enables us to engender finite deformation by a contactless load. As a case study, we apply thermal load to the pore coating and carry out a finite element analysis to probe instabilities and the associated phononic properties. It turns out that a novel buckling mode, preserving the nature of surface wrinkling in tubular structures, can be induced under a plane-strain setup, and a smaller size of the unit cell is attained compared to the counterpart of traditional buckled profile in soft porous elastomers. In particular, this buckling pattern is able to produce several bandgaps in different frequency ranges as the macroscopic mean strain increases. We further introduce a metallic core as local resonator, and the updated metamaterial allows a low-frequency bandgap, the bandgap width of which can be estimated by a simplified theoretical model. As more free parameters are involved in the structure, we perform a detailed parametric study to elucidate the influences of the modulus ratio between coating and matrix, the porosity, the core radius, and the macroscopic mean strain on the buckling initiation and the evolution of bandgap. Remarkably, a stiffer surface coating is prone to enhance the stability of the structure, which is contrary to existing results in film/substrate bilayers. It is expected that the current study could shed light on new insight into pattern formation and wave manipulation in porous elastomers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源