论文标题
用于精确和兼容的阻抗控制的混合逆动力学模型的端到端学习
End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and Compliant Impedance Control
论文作者
论文摘要
众所周知,逆动力学模型可以改善机器人控制中的跟踪性能。这些模型需要精确捕获机器人动力学,这些动力学由良好理解的组件组成,例如刚体动力学和效果,这些动态仍然具有挑战性,例如捕获,例如粘板滑动摩擦和机械灵活性。这种效果表现出磁滞和部分可观察性,使它们变得尤其具有挑战性。因此,在这种情况下,尤其非常适合将物理先验与数据驱动方法结合起来的混合模型。我们提出了一种新型的混合模型公式,使我们能够识别刚体动力学模型的完全一致的惯性参数,该模型与复发性神经网络结构配对,从而使我们能够使用网络存储器捕获未建模的部分可观察到的效果。我们将我们的方法与7度自由操纵器中的最新反向动态模型进行了比较。使用通过最佳实验设计方法获得的数据集,我们研究了离线扭矩预测和联合学习方法的概括能力的准确性。在对实际系统的控制实验中,我们将模型评估为阻抗控制的馈送项,并表明可以大幅度降低反馈收益以达到给定的跟踪准确性。
It is well-known that inverse dynamics models can improve tracking performance in robot control. These models need to precisely capture the robot dynamics, which consist of well-understood components, e.g., rigid body dynamics, and effects that remain challenging to capture, e.g., stick-slip friction and mechanical flexibilities. Such effects exhibit hysteresis and partial observability, rendering them, particularly challenging to model. Hence, hybrid models, which combine a physical prior with data-driven approaches are especially well-suited in this setting. We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model which is paired with a recurrent neural network architecture, allowing us to capture unmodeled partially observable effects using the network memory. We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator. Using data sets obtained through an optimal experiment design approach, we study the accuracy of offline torque prediction and generalization capabilities of joint learning methods. In control experiments on the real system, we evaluate the model as a feed-forward term for impedance control and show the feedback gains can be drastically reduced to achieve a given tracking accuracy.