论文标题
常识和指定的实体知识扎根对话生成
Commonsense and Named Entity Aware Knowledge Grounded Dialogue Generation
论文作者
论文摘要
基于外部知识的对话和对话历史上下文中的语言模式,例如省略号,图谱和共同参考,对于对话理解和产生至关重要。在本文中,我们提出了一种新颖的开放域对话生成模型,该模型有效地利用了与每个话语相关的非结构化主题特定知识之外,还利用了基于实体的大规模常识和指定的基于实体的知识。我们使用共同参考使用指定的实体感知结构来增强常识性知识。我们提出的模型利用多跳的注意力层来保留对话历史和相关知识中最准确,最关键的部分。此外,我们采用常识性和命名实体增强了注意力模块,该模块从来自各种来源的提取的三元组开始,并逐渐使用多跳上的注意力逐渐找到相关的支撑式三元组,并从交互式对话知识模块中获得的查询向量。两个基准数据集的经验结果表明,我们的模型在自动评估指标和人类判断方面都显着优于最先进的方法。我们的代码可在\ href {https://github.com/deekshavarshey/cntf} {https://github.com/deekshavarshney/cntf} { \ href {https://www.iitp.ac.in/~ai-nlp-ml/resources/codes/cntf.zip} {https://www.iitp.ac.ac.ac.ac.ac.in/--ai-nlp-ml/resources/codes/codes/cntf.zip}。
Grounding dialogue on external knowledge and interpreting linguistic patterns in dialogue history context, such as ellipsis, anaphora, and co-references is critical for dialogue comprehension and generation. In this paper, we present a novel open-domain dialogue generation model which effectively utilizes the large-scale commonsense and named entity based knowledge in addition to the unstructured topic-specific knowledge associated with each utterance. We enhance the commonsense knowledge with named entity-aware structures using co-references. Our proposed model utilizes a multi-hop attention layer to preserve the most accurate and critical parts of the dialogue history and the associated knowledge. In addition, we employ a Commonsense and Named Entity Enhanced Attention Module, which starts with the extracted triples from various sources and gradually finds the relevant supporting set of triples using multi-hop attention with the query vector obtained from the interactive dialogue-knowledge module. Empirical results on two benchmark dataset demonstrate that our model significantly outperforms the state-of-the-art methods in terms of both automatic evaluation metrics and human judgment. Our code is publicly available at \href{https://github.com/deekshaVarshney/CNTF}{https://github.com/deekshaVarshney/CNTF}; \href{https://www.iitp.ac.in/~ai-nlp-ml/resources/codes/CNTF.zip}{https://www.iitp.ac.in/-ai-nlp-ml/resources/ codes/CNTF.zip}.