论文标题
在二维中嘈杂随机量子电路的纠缠熵缩放尺度
Entanglement entropy scaling of noisy random quantum circuits in two dimensions
论文作者
论文摘要
如果没有误差校正,嘈杂的量子设备是否可以提供比经典计算机相比的量子优势,这是当前量子计算的关键问题。在这项工作中,将随机量子电路用作证明量子优势的范式模型,在实验相关的二维结构上模拟了去极化噪声。通过全面的数值模拟和理论分析,我们发现最大可实现的操作员纠缠熵(表明最大模拟成本)具有区域定律缩放,系统尺寸的恒定噪声速率。另一方面,我们还发现,最大可实现的操作员纠缠熵具有功率定律,并且固定系统大小的噪声速率,并且只有在系统尺寸增加时噪声速率降低时才能获得量定律缩放。
Whether noisy quantum devices without error correction can provide quantum advantage over classical computers is a critical issue of current quantum computation. In this work, the random quantum circuits, which are used as the paradigm model to demonstrate quantum advantage, are simulated with depolarizing noise on experiment relevant two-dimensional architecture. With comprehensive numerical simulation and theoretical analysis, we find that the maximum achievable operator entanglement entropy, which indicates maximal simulation cost, has area law scaling with the system size for constant noise rate. On the other hand, we also find that the maximum achievable operator entanglement entropy has power law scaling with the noise rate for fixed system size, and the volume law scaling can be obtained only if the noise rate decreases when system size increase.