论文标题
Milnor的三重链接编号的变化
Variations of Milnor's triple linking number
论文作者
论文摘要
拓扑聚合物具有各种拓扑类型,并且通过图表示。但是,琼斯多项式,我们很难计算它。相对于交叉数量,计算时间呈指数增长。最简单的Vassiliev不变式是链接数字,因此我们将寻求下一个简单的数字是Milnor的三重链接数字。在本文中,我们介绍了Milnor型Vassiliev不变的简单高斯图公式。这些是不值得的,而无基点的Milnor的三重链接数通常是扭转值。
Topological polymers have various topological types, and they are expressed by graphs. However, the Jones polynomial, we have a difficulty to compute it; computational time is growing exponentially with respect to the crossing number. The simplest Vassiliev invariant is the linking number and thus we will seek a next simple one is as the Milnor's triple linking number. In this paper, we introduce simple Gauss diagram formulas of Vassiliev invariants of Milnor type. These are non-torsion valued, whereas the base-point-free Milnor's triple linking number is usually torsion-valued.