论文标题

使用自审议的代表学习进行卫星图像分类的数据生成

Data Generation for Satellite Image Classification Using Self-Supervised Representation Learning

论文作者

Gulyanon, Sarun, Limprasert, Wasit, Songmuang, Pokpong, Kongkachandra, Rachada

论文摘要

有监督的深神经网络是遥感域中许多任务的状态,与此类技术需要由成对的输入和标签组成的数据集,这些数据集以人力和资源的术语来收集稀有且昂贵。另一方面,有大量的原始卫星图像可用于商业和学术用途。因此,在这项工作中,我们通过基于自我监督的学习技术引入过程来创建用于卫星图像贴片的合成标签,从而解决了卫星图像分类任务中标记的数据问题的不足。这些合成标签可以用作现有监督学习技术的培训数据集。在我们的实验中,我们表明在合成标签上训练的模型具有与在真实标签上训练的模型相似的性能。在创建合成标签的过程中,我们还获得了可传递多功能和知识的视觉表示向量。

Supervised deep neural networks are the-state-of-the-art for many tasks in the remote sensing domain, against the fact that such techniques require the dataset consisting of pairs of input and label, which are rare and expensive to collect in term of both manpower and resources. On the other hand, there are abundance of raw satellite images available both for commercial and academic purposes. Hence, in this work, we tackle the insufficient labeled data problem in satellite image classification task by introducing the process based on the self-supervised learning technique to create the synthetic labels for satellite image patches. These synthetic labels can be used as the training dataset for the existing supervised learning techniques. In our experiments, we show that the models trained on the synthetic labels give similar performance to the models trained on the real labels. And in the process of creating the synthetic labels, we also obtain the visual representation vectors that are versatile and knowledge transferable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源