论文标题

使用Daubechies小波分子轨道对分子特性进行准确有效的量子计算:针对实验数据的基准研究

Accurate and Efficient Quantum Computations of Molecular Properties Using Daubechies Wavelet Molecular Orbitals: A Benchmark Study against Experimental Data

论文作者

Hong, Cheng-Lin, Tsai, Ting, Chou, Jyh-Pin, Chen, Peng-Jen, Tsai, Pei-Kai, Chen, Yu-Cheng, Kuo, En-Jui, Srolovitz, David, Hu, Alice, Cheng, Yuan-Chung, Goan, Hsi-Sheng

论文摘要

尽管量子计算(QC)被认为是计算量子化学的有希望的数值方法,但量子化学计算在量子计算机上的当前应用仅限于小分子。当分子系统的大小变大时,这种限制可以归因于构建和操纵更多量子的技术问题以及量子门在量子电路中相关的复杂操作。结果,要减少所需量子位数的数量才能使QC实用。当前,最小的STO-3G基集集合在基准研究中通常使用,因为它需要最少的旋转轨道。但是,使用STO-3G的准确性通常很低,因此无法提供有用的预测。我们建议采用多布奇小波作为分子电子特性QC的准确有效方法。我们证明,由daubechies小波构建的最小基集可以通过更好地描述分子哈密顿量,同时保持旋转轨道的数量最小,从而产生准确的结果。通过通过Daubechies小波进行改进的哈密顿量,我们使用量子计算算法计算H $ _2 $和LIH的振动频率,以表明结果与实验数据非常吻合。结果,我们实现了使用CC-PVDZ基集的完整配置交互计算的量子计算,而计算成本与STO-3G计算相同。因此,我们的工作为分子系统的有效QC提供了分子哈密顿量的更有效,更准确的表示,并且首次证明,使用近期量子计算机中可用的量子资源可以实现与实验测量相一致的预测。

Although quantum computation (QC) is regarded as a promising numerical method for computational quantum chemistry, current applications of quantum-chemistry calculations on quantum computers are limited to small molecules. This limitation can be ascribed to technical problems in building and manipulating more qubits and the associated complicated operations of quantum gates in a quantum circuit when the size of the molecular system becomes large. As a result, reducing the number of required qubits is necessary to make QC practical. Currently, the minimal STO-3G basis set is commonly used in benchmark studies because it requires the minimum number of spin orbitals. Nonetheless, the accuracy of using STO-3G is generally low and thus cannot provide useful predictions. We propose to adopt Daubechies wavelet functions as an accurate and efficient method for QCs of molecular electronic properties. We demonstrate that a minimal basis set constructed from Daubechies wavelet basis can yield accurate results through a better description of the molecular Hamiltonian, while keeping the number of spin orbitals minimal. With the improved Hamiltonian through Daubechies wavelets, we calculate vibrational frequencies for H$_2$ and LiH using quantum-computing algorithm to show that the results are in excellent agreement with experimental data. As a result, we achieve quantum calculations in which accuracy is comparable with that of the full configuration interaction calculation using the cc-pVDZ basis set, whereas the computational cost is the same as that of a STO-3G calculation. Thus, our work provides a more efficient and accurate representation of the molecular Hamiltonian for efficient QCs of molecular systems, and for the first time demonstrates that predictions in agreement with experimental measurements are possible to be achieved with quantum resources available in near-term quantum computers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源