论文标题

弦理论紧缩启发的通用无尺度通货膨胀

Generic no-scale inflation inspired from string theory compactifications

论文作者

Wu, Lina, Li, Tianjun

论文摘要

我们提出了灵感来自弦理论压实启发的通用无规律通货膨胀。我们考虑带有Efflaton Field $φ$的Kähler潜力,以及一个,两个和三个KählerModuli。此外,我们总体上考虑了$φ$的可重新分配的超电势。我们在细节上研究了频谱指数和张量尺度比率,并找到与宇宙微波背景(CMB)的Planck和Bicep/Keck实验数据一致的可行参数空间。所有型号的频谱索引为$ n_s \ simeq 1-2/n \ sim 0.965 $,分别为一个,两和三个模型模型的张量与量表$ r $ $ r $ r $ $ r $ r $ $ r $ r $ $ r \ r \ simeq12/n^2 $,$ 83/n^4 $和$ 4/n^2 $。两个模量模型的特定$ r $来自潜在的不可忽略的高阶期限的贡献。在三个模量模型中,标量电势与全局超对称性相似,但是Kähler电位不同。具有$α= 1 $的电子模型和$α= 1/3 $的T模型可以分别在一个模量模型和三个模量模型中实现。有趣的是,具有二次和四分之一电位的模型在嵌入无尺度的超级重力后仍能满足当前对$ r $的紧密限制。

We propose the generic no-scale inflation inspired from string theory compactifications. We consider the Kähler potentials with an inflaton field $φ$, as well as one, two, and three Kähler moduli. Also, we consider the renormalizable superpotential of $φ$ in general. We study the spectral index and tensor-to-scalar ratio in details, and find the viable parameter spaces which are consistent with the Planck and BICEP/Keck experimental data on the cosmic microwave background (CMB). The spectral index is $n_s\simeq 1-2/N \sim 0.965$ for all models, and the tensor-to-scalar ratio $r$ is $r\simeq12/N^2$, $ 83/N^4$ and $ 4/N^2$ for the one, two and three moduli models, respectively. The particular $r$ for two moduli model comes from the contributions of the non-negligible higher order term in potential. In the three moduli model, the scalar potential is similar to the global supersymmetry, but the Kähler potential is different. The E-model with $α=1$ and T-model with $α=1/3$ can be realized in the one modulus model and the three moduli model, respectively. Interestingly, the models with quadratic and quartic potentials still satisfy the current tight bound on $r$ after embedding into no-scale supergravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源