论文标题

方法论,工作量和工具用于内存:启用以数据为中心的体系结构

Methodologies, Workloads, and Tools for Processing-in-Memory: Enabling the Adoption of Data-Centric Architectures

论文作者

Oliveira, Geraldo F., Gómez-Luna, Juan, Ghose, Saugata, Mutlu, Onur

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The increasing prevalence and growing size of data in modern applications have led to high costs for computation in traditional processor-centric computing systems. Moving large volumes of data between memory devices (e.g., DRAM) and computing elements (e.g., CPUs, GPUs) across bandwidth-limited memory channels can consume more than 60% of the total energy in modern systems. To mitigate these costs, the processing-in-memory (PIM) paradigm moves computation closer to where the data resides, reducing (and in some cases eliminating) the need to move data between memory and the processor. There are two main approaches to PIM: (1) processing-near-memory (PnM), where PIM logic is added to the same die as memory or to the logic layer of 3D-stacked memory; and (2) processing-using-memory (PuM), which uses the operational principles of memory cells to perform computation. Many works from academia and industry have shown the benefits of PnM and PuM for a wide range of workloads from different domains. However, fully adopting PIM in commercial systems is still very challenging due to the lack of tools and system support for PIM architectures across the computer architecture stack, which includes: (i) workload characterization methodologies and benchmark suites targeting PIM architectures; (ii) frameworks that can facilitate the implementation of complex operations and algorithms using the underlying PIM primitives; (iii) compiler support and compiler optimizations targeting PIM architectures; (iv) operating system support for PIM-aware virtual memory, memory management, data allocation, and data mapping; and (v) efficient data coherence and consistency mechanisms. Our goal in this work is to provide tools and system support for PnM and PuM architectures, aiming to ease the adoption of PIM in current and future systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源