论文标题
评估自动驾驶计划者的鲁棒性针对对抗性影响
Evaluating Automated Driving Planner Robustness against Adversarial Influence
论文作者
论文摘要
评估自动驾驶计划者的鲁棒性是一项艰巨而艰巨的任务。尽管评估车辆的方法已经建立了良好,但它们尚未说明具有自主组件的车辆与对抗者共享道路的现实。我们的方法基于概率信任模型,旨在帮助研究人员评估支持机器学习的计划者免受对抗性影响的保护的鲁棒性。与使用所有车辆使用相同评估数据集评估安全性的既定实践相反,我们认为对抗性评估从根本上需要一个旨在击败特定保护的过程。因此,我们建议评估是基于估计对手确定有效诱导不安全行为的条件的困难。这种推理需要有关要保护的威胁,保护和计划决定方面的精确陈述。我们通过评估依靠基于相机的对象探测器的计划者的保护来证明我们的方法。
Evaluating the robustness of automated driving planners is a critical and challenging task. Although methodologies to evaluate vehicles are well established, they do not yet account for a reality in which vehicles with autonomous components share the road with adversarial agents. Our approach, based on probabilistic trust models, aims to help researchers assess the robustness of protections for machine learning-enabled planners against adversarial influence. In contrast with established practices that evaluate safety using the same evaluation dataset for all vehicles, we argue that adversarial evaluation fundamentally requires a process that seeks to defeat a specific protection. Hence, we propose that evaluations be based on estimating the difficulty for an adversary to determine conditions that effectively induce unsafe behavior. This type of inference requires precise statements about threats, protections, and aspects of planning decisions to be guarded. We demonstrate our approach by evaluating protections for planners relying on camera-based object detectors.