论文标题
具有和没有超子核心的磁性中子星的热光度退化性
Thermal luminosity degeneracy of magnetized neutron stars with and without hyperon cores
论文作者
论文摘要
强烈的地壳电流的耗散会在冷却中子星中产生高焦耳加热率。在这里表明,焦耳的加热可以抵消快速冷却,从而难以通过观察到的热光度$L_γ$的测量来推断高音(加速冷却)的存在。带有和没有超子芯的型号匹配年轻磁铁的$l_γ$(带有poloidal-Dipolar Field $ b _ {\ textrm {dip}} \ gtrsim 10^{14} $ g在极性表面和$l_γ\l_γ\ gtrsim 10^{34} $ 10^{34} $ erg s $^10^$ yr成熟,中等磁化的星星(带有$ b _ {\ textrm {dip}} \ Lessim 10^{14} $ g和$ 10^{31}} \ \ \ \ \\ textrm {erg s}}^{ - 1} 10^5 $ yr)。在磁铁中,无论是否因超子超流量抑制后者,地壳温度几乎与芯中的Hyperon Direct Direct URCA冷却无关。没有多骨的光磁体的热光度和带有高音的重型磁铁的热量在同一范围内具有$L_γ$,几乎无法区分。同样,$l_γ$具有$ b _ {\ textrm {dip}} \ Lessim 10^{14} $ g的中子星的数据,但内部磁场不适合提取有关状态方程的信息,只要超级子是超级流体,最大的能量幅度,其能量的能量幅度最大。
The dissipation of intense crustal electric currents produces high Joule heating rates in cooling neutron stars. Here it is shown that Joule heating can counterbalance fast cooling, making it difficult to infer the presence of hyperons (which accelerate cooling) from measurements of the observed thermal luminosity $L_γ$. Models with and without hyperon cores match $L_γ$ of young magnetars (with poloidal-dipolar field $B_{\textrm{dip}} \gtrsim 10^{14}$ G at the polar surface and $L_γ \gtrsim 10^{34}$ erg s$^{-1}$ at $t \lesssim 10^5$ yr) as well as mature, moderately magnetized stars (with $B_{\textrm{dip}} \lesssim 10^{14}$ G and $10^{31} \ \textrm{erg s}^{-1} \lesssim L_γ \lesssim 10^{32}$ erg s$^{-1}$ at $t \gtrsim 10^5$ yr). In magnetars, the crustal temperature is almost independent of hyperon direct Urca cooling in the core, regardless of whether the latter is suppressed or not by hyperon superfluidity. The thermal luminosities of light magnetars without hyperons and heavy magnetars with hyperons have $L_γ$ in the same range and are almost indistinguishable. Likewise, $L_γ$ data of neutron stars with $B_{\textrm{dip}} \lesssim 10^{14}$ G but with strong internal fields are not suitable to extract information about the equation of state as long as hyperons are superfluid, with maximum amplitude of the energy gaps of the order $\approx 1$ MeV.