论文标题
部分可观测时空混沌系统的无模型预测
CompleteDT: Point Cloud Completion with Dense Augment Inference Transformers
论文作者
论文摘要
点云完成任务旨在预测不完整的点云的缺失部分,并通过详细信息生成完整的点云。在本文中,我们提出了一个新颖的点云完成网络,即完成。具体而言,从具有不同分辨率的点云中学到了特征,该特征是从不完整输入中采样的,并根据几何结构转换为一系列\ textit {spots}。然后,提出了基于变压器的密集关系增强模块(DRA),以学习\ textit {spots}中的功能,并考虑这些\ textit {spots}之间的相关性。 DRA由点局部注意模块(PLA)和点密集的多尺度注意模块(PDMA)组成,其中PLA通过自适应测量邻居的权重,PDMA在这些\ textIt {spots {spots}之间捕获了本地\ textit {spots}中的本地信息,以多元的范围内的整体关系。最后,由多分辨率点融合模块(MPF)从\ textit {spots}预测完整形状,该模块逐渐从\ textit {spots}生成完整的点云,并基于这些生成的点云而更新\ textit {spots}。实验结果表明,由于基于变压器的DRA可以从不完整的输入中学习表达性特征,并且MPF可以完全探索这些功能以预测完整的输入,因此我们的方法在很大程度上胜过了最先进的方法。
Point cloud completion task aims to predict the missing part of incomplete point clouds and generate complete point clouds with details. In this paper, we propose a novel point cloud completion network, namely CompleteDT. Specifically, features are learned from point clouds with different resolutions, which is sampled from the incomplete input, and are converted to a series of \textit{spots} based on the geometrical structure. Then, the Dense Relation Augment Module (DRA) based on the transformer is proposed to learn features within \textit{spots} and consider the correlation among these \textit{spots}. The DRA consists of Point Local-Attention Module (PLA) and Point Dense Multi-Scale Attention Module (PDMA), where the PLA captures the local information within the local \textit{spots} by adaptively measuring weights of neighbors and the PDMA exploits the global relationship between these \textit{spots} in a multi-scale densely connected manner. Lastly, the complete shape is predicted from \textit{spots} by the Multi-resolution Point Fusion Module (MPF), which gradually generates complete point clouds from \textit{spots}, and updates \textit{spots} based on these generated point clouds. Experimental results show that, because the DRA based on the transformer can learn the expressive features from the incomplete input and the MPF can fully explore these feature to predict the complete input, our method largely outperforms the state-of-the-art methods.