论文标题
具有梯度采样的多效率鲁棒控制器设计
Multi-fidelity robust controller design with gradient sampling
论文作者
论文摘要
即使在干扰和噪声下,稳定动力系统的强大控制器通常被表达为非平滑,非凸优化问题的解决方案。尽管诸如梯度抽样之类的方法可以处理非概念性和非平滑度,但评估目标函数的成本可能很大,这使得对具有高维状态空间的动态系统的稳健控制挑战。在这项工作中,我们介绍了梯度采样的多效率变体,以利用具有低维状态空间的低成本,低基质模型,以加快优化过程,同时为利益系统的高保真模型提供了收敛保证,这在优化过程的最后阶段是在优化过程的最后阶段访问的。我们的第一个多保真方法启动了较高的保真度模型上的梯度采样,该模型的起点是从较便宜,较低的忠诚度模型获得的。我们的第二种多保真方法依赖于根据低保真模型计算的梯度集合。通过控制气缸唤醒中钢导轨剖面和层流流的冷却的数值实验表明,与单独使用高利益模型相比,我们的新的多层性梯度采样方法达到了多达两个数量级速度。
Robust controllers that stabilize dynamical systems even under disturbances and noise are often formulated as solutions of nonsmooth, nonconvex optimization problems. While methods such as gradient sampling can handle the nonconvexity and nonsmoothness, the costs of evaluating the objective function may be substantial, making robust control challenging for dynamical systems with high-dimensional state spaces. In this work, we introduce multi-fidelity variants of gradient sampling that leverage low-cost, low-fidelity models with low-dimensional state spaces for speeding up the optimization process while nonetheless providing convergence guarantees for a high-fidelity model of the system of interest, which is primarily accessed in the last phase of the optimization process. Our first multi-fidelity method initiates gradient sampling on higher fidelity models with starting points obtained from cheaper, lower fidelity models. Our second multi-fidelity method relies on ensembles of gradients that are computed from low- and high-fidelity models. Numerical experiments with controlling the cooling of a steel rail profile and laminar flow in a cylinder wake demonstrate that our new multi-fidelity gradient sampling methods achieve up to two orders of magnitude speedup compared to the single-fidelity gradient sampling method that relies on the high-fidelity model alone.