论文标题

升级ML漏洞识别:在功能空间中利用域约束,以实现强大的Android恶意软件检测

Level Up with ML Vulnerability Identification: Leveraging Domain Constraints in Feature Space for Robust Android Malware Detection

论文作者

Bostani, Hamid, Zhao, Zhengyu, Liu, Zhuoran, Moonsamy, Veelasha

论文摘要

机器学习(ML)有望增强Android恶意软件检测的功效(AMD);但是,ML模型容易受到逼真的逃避攻击的影响 - 制作满足Android恶意软件域约束的可实现的对抗示例(AES)。为了消除ML漏洞,防御者的目的是确定ML模型容易欺骗的特征空间中的敏感区域。识别脆弱区域的主要方法涉及调查可实现的AE,但生成这些可行的应用程序构成了挑战。例如,以前的工作依赖于生成功能空间范围内的AES或对抗硬化中的问题空间可实现的AE。前者是有效的,但缺乏对脆弱区域的全面覆盖,而后者可以通过满足域约束来揭示这些区域,但已知很耗时。为了解决这些限制,我们提出了一种促进弱势区域识别的方法。具体而言,我们在功能空间中介绍了对Android域约束的新解释,然后是一种学习它们的新技术。我们在各种逃避攻击中进行的经验评估表明,使用学习的域约束对AE的有效检测,平均为89.6%。此外,对不同的Android恶意软件检测器进行的广泛实验表明,在对抗性训练(AT)中利用我们学到的域约束(AT)优于其他基于基于规范的AES或最先进的非均匀扰动的防御能力。最后,我们表明,检验具有多种功能空间可实现的AE的恶意软件检测器会导致77.9%的鲁棒性提高,以相对于未知问题空间转换产生的可实现的AE,并且比使用可实现的AES更快的训练速度高达70倍。

Machine Learning (ML) promises to enhance the efficacy of Android Malware Detection (AMD); however, ML models are vulnerable to realistic evasion attacks--crafting realizable Adversarial Examples (AEs) that satisfy Android malware domain constraints. To eliminate ML vulnerabilities, defenders aim to identify susceptible regions in the feature space where ML models are prone to deception. The primary approach to identifying vulnerable regions involves investigating realizable AEs, but generating these feasible apps poses a challenge. For instance, previous work has relied on generating either feature-space norm-bounded AEs or problem-space realizable AEs in adversarial hardening. The former is efficient but lacks full coverage of vulnerable regions while the latter can uncover these regions by satisfying domain constraints but is known to be time-consuming. To address these limitations, we propose an approach to facilitate the identification of vulnerable regions. Specifically, we introduce a new interpretation of Android domain constraints in the feature space, followed by a novel technique that learns them. Our empirical evaluations across various evasion attacks indicate effective detection of AEs using learned domain constraints, with an average of 89.6%. Furthermore, extensive experiments on different Android malware detectors demonstrate that utilizing our learned domain constraints in Adversarial Training (AT) outperforms other AT-based defenses that rely on norm-bounded AEs or state-of-the-art non-uniform perturbations. Finally, we show that retraining a malware detector with a wide variety of feature-space realizable AEs results in a 77.9% robustness improvement against realizable AEs generated by unknown problem-space transformations, with up to 70x faster training than using problem-space realizable AEs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源