论文标题

Anyonic连锁店 - $α$ - 引导 - CFT-缺陷 - 子因素

Anyonic Chains -- $α$-Induction -- CFT -- Defects -- Subfactors

论文作者

Hollands, Stefan

论文摘要

给定统一的融合类别,可以定义所谓的``任何人旋转链''的希尔伯特空间,而最近的邻居汉密尔顿人提供实时演变。有大量证据表明,此类系统的合适缩放限制可以导致$ 1+1 $二维的保形场理论(CFTS),并且实际上可以使用可能用于构建新颖的CFT类。除了汉密尔顿人及其密度外,自旋链还携带与汉密尔顿的对称操作员的代数,这些操作员具有有趣的代表,作为矩阵 - 产品运营商(MPOS)。另一方面,融合类别是由von Neumann代数 - 结果对引起的。在这项工作中,我们研究了相应的任何旋转链模型的此类结构的一些有趣后果。我们的主要结果之一是构建了作用于双方链链的新型MPO代数。我们表明,该代数完全是同构的,这是由Fr \ fr \“ Ohlich等人和Bischoff等人构建的$ 1+1 $ cfts的同构,即使模型在有限的晶格上定义了。我们因此,我们的中心预测与垂直限制相关联(跨性别)(临时)的依赖(我们的临时限制),该模型(跨性别)依赖于跨性别(跨性别)。该MPO与在我们随后的构造中产生的所谓“双三角代数”密切相关。基于类别的编织结构和$α$引导。本文介绍给子因子和融合类别的介绍性部分具有审查的特征。

Given a unitary fusion category, one can define the Hilbert space of a so-called ``anyonic spin-chain'' and nearest neighbor Hamiltonians providing a real-time evolution. There is considerable evidence that suitable scaling limits of such systems can lead to $1+1$-dimensional conformal field theories (CFTs), and in fact, can be used potentially to construct novel classes of CFTs. Besides the Hamiltonians and their densities, the spin chain is known to carry an algebra of symmetry operators commuting with the Hamiltonian, and these operators have an interesting representation as matrix-product-operators (MPOs). On the other hand, fusion categories are well-known to arise from a von Neumann algebra-subfactor pair. In this work, we investigate some interesting consequences of such structures for the corresponding anyonic spin-chain model. One of our main results is the construction of a novel algebra of MPOs acting on a bi-partite anyonic chain. We show that this algebra is precisely isomorphic to the defect algebra of $1+1$ CFTs as constructed by Fr\" ohlich et al. and Bischoff et al., even though the model is defined on a finite lattice. We thus conjecture that its central projections are associated with the irreducible vertical (transparent) defects in the scaling limit of the model. Our results partly rely on the observation that MPOs are closely related to the so-called ``double triangle algebra'' arising in subfactor theory. In our subsequent constructions, we use insights into the structure of the double triangle algebra by B\" ockenhauer et al. based on the braided structure of the categories and on $α$-induction. The introductory section of this paper to subfactors and fusion categories has the character of a review.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源