论文标题
在编织的Connes-Moscovici结构上
On the braided Connes-Moscovici construction
论文作者
论文摘要
$ 1998 $,Connes和Moscovici定义了Hopf代数的循环共同体。在$ 2010 $中,Khalkhali和Pourkia提出了编织的概括:对编织类别的任何Hopf代数$ H $ $ \ MATHCAL B $,它们将寄生虫对象与$ \ Mathcal b $相关联。在本文中,我们明确计算了该副细胞对象的副细胞操作员的功能。此外,我们在$ h $中引入了扭曲的模块化对,并从中引入了(CO)循环模块。最后,我们将与$ h $相关的副细胞对象与与$ h $ - 模块煤层相关的副物体通过Connes-Moscovici Trace的分类版本相关联。
In $1998$, Connes and Moscovici defined the cyclic cohomology of Hopf algebras. In $2010$, Khalkhali and Pourkia proposed a braided generalization: to any Hopf algebra $H$ in a braided category $\mathcal B$, they associate a paracocyclic object in $\mathcal B$. In this paper we explicitly compute the powers of the paracocyclic operator of this paracocyclic object. Also, we introduce twisted modular pairs in involution for $H$ and derive (co)cyclic modules from them. Finally, we relate the paracocyclic object associated with $H$ to that associated with an $H$-module coalgebra via a categorical version of the Connes-Moscovici trace.