论文标题
部分型网络的概念级调试
Concept-level Debugging of Part-Prototype Networks
论文作者
论文摘要
零件型网络(Protopnets)是基于概念的分类器,旨在实现与黑框模型相同的性能而不会损害透明度。原始网络基于与特定于类的零件型相似性来计算预测,以识别训练示例的一部分,从而易于忠实地确定哪些示例对任何目标预测以及原因负责。但是,像其他模型一样,它们很容易从数据中拾取混杂因素和捷径,因此遭受了预测准确性和有限的概括。我们提出了Protopdebug,这是一个有效的原始概念级调试器,其中人类主管以模型的解释为指导,以必须忘记或保存哪些部分标准的形式提供反馈,并且该模型经过微调以与此监督相一致。我们的实验评估表明,Protopdebug的表现要优于最先进的注释成本。与外行的在线实验证实了向用户要求的反馈的简单性以及收集的反馈对学习无混杂因素的零件型型的有效性。正如对医疗决策任务的初步评估所建议的那样,Protopdebug是在关键应用中值得信赖的互动学习的有前途的工具。
Part-prototype Networks (ProtoPNets) are concept-based classifiers designed to achieve the same performance as black-box models without compromising transparency. ProtoPNets compute predictions based on similarity to class-specific part-prototypes learned to recognize parts of training examples, making it easy to faithfully determine what examples are responsible for any target prediction and why. However, like other models, they are prone to picking up confounders and shortcuts from the data, thus suffering from compromised prediction accuracy and limited generalization. We propose ProtoPDebug, an effective concept-level debugger for ProtoPNets in which a human supervisor, guided by the model's explanations, supplies feedback in the form of what part-prototypes must be forgotten or kept, and the model is fine-tuned to align with this supervision. Our experimental evaluation shows that ProtoPDebug outperforms state-of-the-art debuggers for a fraction of the annotation cost. An online experiment with laypeople confirms the simplicity of the feedback requested to the users and the effectiveness of the collected feedback for learning confounder-free part-prototypes. ProtoPDebug is a promising tool for trustworthy interactive learning in critical applications, as suggested by a preliminary evaluation on a medical decision making task.