论文标题
极端维格尼(极端自旋旋转状态)的恒星表示
Stellar representation of extremal Wigner-negative spin states
论文作者
论文摘要
Majoraana恒星表示用于表征在球体相空间上具有最大负脉络剂的准能力分布的自旋状态。这些最大的Wigner阴性自旋状态通常在其星形构型中表现出部分但不高度的对称性。特别是,对于自旋$ j> 2 $,最大星座在可用时不对应于柏拉图固体,并且随着尺寸的增加而不会遵循明显的几何图案。另外,它们通常与自旋状态不同,这些状态最大化了其他非古老性措施,例如抗矛盾或几何纠缠。随机状态($ j \ leq 6 $)平均显示出相对较高的消极情绪,但是在希尔伯特(Hilbert)领域,极端状态和相似性的否定状态在统计上很少见。我们还证明,所有任意维度的自旋相干状态都具有非零的wigner负性。这提供了证据,表明所有纯自旋状态也具有非零的wigner负性。结果可以应用于表现出置换不变性的量子集合。
The Majorana stellar representation is used to characterize spin states that have a maximally negative Wigner quasiprobability distribution on a spherical phase space. These maximally Wigner-negative spin states generally exhibit a partial but not high degree of symmetry within their star configurations. In particular, for spin $j > 2$, maximal constellations do not correspond to a Platonic solid when available and do not follow an obvious geometric pattern as dimension increases. In addition, they are generally different from spin states that maximize other measures of nonclassicality such as anticoherence or geometric entanglement. Random states ($j \leq 6$) display on average a relatively high amount of negativity, but the extremal states and those with similar negativity are statistically rare in Hilbert space. We also prove that all spin coherent states of arbitrary dimension have non-zero Wigner negativity. This offers evidence that all pure spin states also have non-zero Wigner negativity. The results can be applied to qubit ensembles exhibiting permutation invariance.