论文标题
具有预处理更新的随机梯度方法
Stochastic Gradient Methods with Preconditioned Updates
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This work considers the non-convex finite sum minimization problem. There are several algorithms for such problems, but existing methods often work poorly when the problem is badly scaled and/or ill-conditioned, and a primary goal of this work is to introduce methods that alleviate this issue. Thus, here we include a preconditioner based on Hutchinson's approach to approximating the diagonal of the Hessian, and couple it with several gradient-based methods to give new scaled algorithms: Scaled SARAH and Scaled L-SVRG. Theoretical complexity guarantees under smoothness assumptions are presented. We prove linear convergence when both smoothness and the PL condition are assumed. Our adaptively scaled methods use approximate partial second-order curvature information and, therefore, can better mitigate the impact of badly scaled problems. This improved practical performance is demonstrated in the numerical experiments also presented in this work.