论文标题
关于半圆形康托套件的总和
On Sums of Semibounded Cantor Sets
论文作者
论文摘要
我们研究了在神经序秩序模型的光谱理论中引起的问题,我们研究了真实线的半曲线封闭子集的功能总和。我们表明,在适当的厚度假设上,对功能的集合和生长假设,此类集合的总和包含半线。我们还举例说明我们的标准在合适的制度中是鲜明的。
Motivated by questions arising in the study of the spectral theory of models of aperiodic order, we investigate sums of functions of semibounded closed subsets of the real line. We show that under suitable thickness assumptions on the sets and growth assumptions on the functions, the sums of such sets contain half-lines. We also give examples to show our criteria are sharp in suitable regimes.