论文标题
$(\ infty,2)$ - 分类神经的模型独立性
Model independence of $(\infty,2)$-categorical nerves
论文作者
论文摘要
对于$(\ infty,2)$ - 类别的大多数型号,将$ \ infty $ - 类别的$ \ infty $类别嵌入到$(\ infty,2)$ - 类别中的$ \ infty $ - 类别以某种风味的神经结构的形式构建。我们证明所有这些神经嵌入都会诱导等效函子,模型的模型变化。我们还表明,所有神经嵌入都会意识到2类的$ \ invy $ - 类别是$(\ infty,2)$ - 类别的子 - $ \ infty $ - 类别,这些类别相对于某些类别的地图。
For most models of $(\infty,2)$-categories an embedding of the $\infty$-category of 2-categories into that of $(\infty,2)$-categories has been constructed in the form of a nerve construction of some flavor. We prove that all those nerve embeddings induce equivalent functors, modulo change of model. We also show that all the nerve embeddings realize the $\infty$-category of 2-categories as the sub-$\infty$-category of $(\infty,2)$-categories that are local with respect to a certain class of maps.