论文标题
为什么这个模型预测了这个未来?封闭形式的时间显着性针对概率预测的因果解释
Why Did This Model Forecast This Future? Closed-Form Temporal Saliency Towards Causal Explanations of Probabilistic Forecasts
论文作者
论文摘要
围绕低级人类行为动态的预测任务对多个研究领域具有重要意义。在这种情况下,解释特定预测的方法可以使域专家能够深入了解行为之间的预测关系。在这项工作中,我们介绍并解决以下问题:给定概率预测模型,我们如何确定该模型在进行预测时显着的观察到的窗口?我们基于以人类感知为基础的信息理论显着性的一般定义,并通过利用域的关键属性将其扩展到预测设置:单个观察可以导致多个有效的期货。我们建议根据所得预测的未来分布的差异熵来表达观察到的窗口的显着性。与现有的方法相比,需要明确培训显着性机制或访问预测模型的内部状态,我们为概率预测中常用密度函数的显着性图获得了封闭形式的解决方案。我们凭经验证明了我们的框架如何从头姿势功能中恢复出明显的窗口,以使用合成的对话数据集进行示例的示例任务预测。
Forecasting tasks surrounding the dynamics of low-level human behavior are of significance to multiple research domains. In such settings, methods for explaining specific forecasts can enable domain experts to gain insights into the predictive relationships between behaviors. In this work, we introduce and address the following question: given a probabilistic forecasting model how can we identify observed windows that the model considers salient when making its forecasts? We build upon a general definition of information-theoretic saliency grounded in human perception and extend it to forecasting settings by leveraging a crucial attribute of the domain: a single observation can result in multiple valid futures. We propose to express the saliency of an observed window in terms of the differential entropy of the resulting predicted future distribution. In contrast to existing methods that either require explicit training of the saliency mechanism or access to the internal states of the forecasting model, we obtain a closed-form solution for the saliency map for commonly used density functions in probabilistic forecasting. We empirically demonstrate how our framework can recover salient observed windows from head pose features for the sample task of speaking-turn forecasting using a synthesized conversation dataset.