论文标题

磁盘星系中压力调节的反馈调节的恒星形成

Pressure-Regulated, Feedback-Modulated Star Formation In Disk Galaxies

论文作者

Ostriker, Eve C., Kim, Chang-Goo

论文摘要

银河磁盘中的恒星形成速率(SFR)取决于可用的星际介质(ISM)气体及其物理状态的数量。相反,ISM的物理状态取决于SFR,因为最近形成的大型恒星注入的“反馈”能量和动量对于抵消湍流耗散和辐射冷却的损失至关重要。 ISM的物理状态还响应了将其限制在重量的重力场,重量增加了较高的压力。在准稳态的状态下,可以预期,不同热相的平均总压将相互匹配,组件压力和总压力将满足热和动态平衡要求,并且SFR会根据需要进行调整以提供必要的恒星辐射和超级新闻反馈。 The pressure-regulated, feedback-modulated (PRFM) theory of the star-forming ISM formalizes these ideas, leading to a prediction that the SFR per unit area, Sigma_SFR, will scale nearly linearly with ISM weight W. In terms of large-scale gas surface density Sigma, stellar plus dark matter density rho_sd, and effective ISM velocity dispersion sigma_eff, an observable weight estimator is w〜p_de = pi g sigma^2/2+sigma(2g rho_sd)^{1/2} sigma_eff,这预计将匹配总平面压力P_TOT。使用一套多相磁流体动力学模拟,我们测试了PRFM模型的原理,并校准总反馈产生UPSILON_TOT = P_TOT/SIGMA_SFR 〜1000 km/s及其组件及其组件。我们将Tigress的结果与理论,以前的数值模拟和观察结果进行比较,发现了极好的一致性。

The star formation rate (SFR) in galactic disks depends on both the quantity of available interstellar medium (ISM) gas and its physical state. Conversely, the ISM's physical state depends on the SFR, because the "feedback" energy and momentum injected by recently-formed massive stars is crucial to offsetting losses from turbulent dissipation and radiative cooling. The ISM's physical state also responds to the gravitational field that confines it, with increased weight driving higher pressure. In a quasi-steady state, it is expected that the mean total pressure of different thermal phases will match each other, that the component pressures and total pressure will satisfy thermal and dynamical equilibrium requirements, and that the SFR will adjust as needed to provide the requisite stellar radiation and supernova feedback. The pressure-regulated, feedback-modulated (PRFM) theory of the star-forming ISM formalizes these ideas, leading to a prediction that the SFR per unit area, Sigma_SFR, will scale nearly linearly with ISM weight W. In terms of large-scale gas surface density Sigma, stellar plus dark matter density rho_sd, and effective ISM velocity dispersion sigma_eff, an observable weight estimator is W~P_DE=pi G Sigma^2/2+Sigma(2G rho_sd)^{1/2} sigma_eff, and this is predicted to match the total midplane pressure P_tot. Using a suite of multiphase magnetohydrodynamic simulations run with the TIGRESS computational framework, we test the principles of the PRFM model and calibrate the total feedback yield Upsilon_tot = P_tot/Sigma_SFR ~ 1000 km/s, as well as its components. We compare results from TIGRESS to theory, previous numerical simulations, and observations, finding excellent agreement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源