论文标题
实用的对抗性多壳形成共形预测
Practical Adversarial Multivalid Conformal Prediction
论文作者
论文摘要
我们为顺序预测提供了一种简单,通用的共形预测方法,可实现针对对抗选择数据的目标经验覆盖范围。它是计算上的轻量级 - 与拆分保形预测相当 - 但不需要进行固定验证集,因此所有数据都可以用于从中得出保形得分的训练模型。通过两种方式,它给出的比边缘覆盖范围更强。首先,它给出了阈值校准的预测集,这些预测集具有正确的经验覆盖范围,甚至是在用于形成整形得分的预测集的阈值上的条件。其次,用户可以指定特征空间的子集的任意集合(可能是相交的),并且保证保证也符合这些子集的成员资格的有条件。我们称我们的算法MVP为缩写,用于多值预测。我们提供理论和广泛的经验评估。
We give a simple, generic conformal prediction method for sequential prediction that achieves target empirical coverage guarantees against adversarially chosen data. It is computationally lightweight -- comparable to split conformal prediction -- but does not require having a held-out validation set, and so all data can be used for training models from which to derive a conformal score. It gives stronger than marginal coverage guarantees in two ways. First, it gives threshold calibrated prediction sets that have correct empirical coverage even conditional on the threshold used to form the prediction set from the conformal score. Second, the user can specify an arbitrary collection of subsets of the feature space -- possibly intersecting -- and the coverage guarantees also hold conditional on membership in each of these subsets. We call our algorithm MVP, short for MultiValid Prediction. We give both theory and an extensive set of empirical evaluations.