论文标题

数据驱动的光谱电导率和化学潜力的重建来自热电传输数据

Data-driven reconstruction of spectral conductivity and chemical potential from thermoelectric transport data

论文作者

Hirosawa, Tomoki, Schäfer, Frank, Maebashi, Hideaki, Matsuura, Hiroyasu, Ogata, Masao

论文摘要

光谱电导率,即Fermi能量的电导率,是确定电子热电传输特性的基石。但是,光谱电导率取决于样品特异性特性,例如载体浓度,空缺,电荷杂质,化学成分和材料微观结构,因此很难将实验结果与理论预测直接联系起来。在这里,我们提出了一种基于机器学习的数据驱动方法,以从热电传输数据中重建光谱电导率和化学势。使用这种机器学习方法,我们首先证明了光谱电导率和温度依赖性化学电位可以在简单的玩具模型中回收。在第二步中,我们将方法应用于掺杂一维的trinuride ta $ _4 $ site $ _4 $〜[t的实验数据。 Inohara,\ textit {et al。},appl。物理。 Lett。 \ textbf {110},183901(2017)]重建每个样品的光谱电导率和化学潜力。此外,从重建的光谱电导率估算了电子的热导率和功绩$ ZT $的最大图形,该光谱电导率可提供超出Wiedemann-Franz定律以外的准确估计值。我们的研究阐明了热电运输特性与真实材料的低能电子状态之间的联系,并建立了有希望的途径,将实验数据纳入传统理论驱动的工作流程中。

The spectral conductivity, i.e., the electrical conductivity as a function of the Fermi energy, is a cornerstone in determining the thermoelectric transport properties of electrons. However, the spectral conductivity depends on sample-specific properties such as carrier concentrations, vacancies, charge impurities, chemical compositions, and material microstructures, making it difficult to relate the experimental result with the theoretical prediction directly. Here, we propose a data-driven approach based on machine learning to reconstruct the spectral conductivity and chemical potential from the thermoelectric transport data. Using this machine learning method, we first demonstrate that the spectral conductivity and temperature-dependent chemical potentials can be recovered within a simple toy model. In a second step, we apply our method to experimental data in doped one-dimensional telluride Ta$_4$SiTe$_4$~[T. Inohara, \textit{et al.}, Appl. Phys. Lett. \textbf{110}, 183901 (2017)] to reconstruct the spectral conductivity and chemical potential for each sample. Furthermore, the thermal conductivity of electrons and the maximal figure of merit $ZT$ are estimated from the reconstructed spectral conductivity, which provides accurate estimates beyond the Wiedemann-Franz law. Our study clarifies the connection between the thermoelectric transport properties and the low-energy electronic states of real materials, and establishes a promising route to incorporate experimental data into traditional theory-driven workflows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源