论文标题

端到端对象检测中的预期查询是什么?

What Are Expected Queries in End-to-End Object Detection?

论文作者

Zhang, Shilong, Wang, Xinjiang, Wang, Jiaqi, Pang, Jiangmiao, Chen, Kai

论文摘要

DETR出现后,端到端对象检测迅速进行。 DITR使用一组稀疏的查询,以大多数传统检测器中代替密集的候选盒子。相比之下,稀疏的查询不能保证作为密集的先验的高回忆。但是,在当前框架中,进行查询密集并不是一件容易的事。它不仅具有沉重的计算成本,而且还遭受了困难的优化。由于稀疏和密集的查询都是不完美的,那么\ emph {端到端对象检测中的预期查询是什么?本文表明,预期的查询应该是密集的不同查询(DDQ)。具体而言,我们将密集的先验介绍回该框架以产生密集的查询。将重复的查询去除预处理应用于这些查询,以便它们可以彼此区分。然后对密集的不同查询进行迭代处理以获得最终的稀疏输出。我们表明,DDQ更强,更健壮,并且收敛速度更快。它在仅有12个时期的MS Coco检测数据集上获得了44.5 AP。 DDQ也很强,因为它在各种数据集上的对象检测和实例分割任务都优于以前的方法。 DDQ融合了传统密集的先验和最近的端到端探测器的优势。我们希望它可以作为新的基线,并激发研究人员重新审视传统方法和端到端探测器之间的互补性。源代码可在\ url {https://github.com/jshilong/ddq}上公开获得。

End-to-end object detection is rapidly progressed after the emergence of DETR. DETRs use a set of sparse queries that replace the dense candidate boxes in most traditional detectors. In comparison, the sparse queries cannot guarantee a high recall as dense priors. However, making queries dense is not trivial in current frameworks. It not only suffers from heavy computational cost but also difficult optimization. As both sparse and dense queries are imperfect, then \emph{what are expected queries in end-to-end object detection}? This paper shows that the expected queries should be Dense Distinct Queries (DDQ). Concretely, we introduce dense priors back to the framework to generate dense queries. A duplicate query removal pre-process is applied to these queries so that they are distinguishable from each other. The dense distinct queries are then iteratively processed to obtain final sparse outputs. We show that DDQ is stronger, more robust, and converges faster. It obtains 44.5 AP on the MS COCO detection dataset with only 12 epochs. DDQ is also robust as it outperforms previous methods on both object detection and instance segmentation tasks on various datasets. DDQ blends advantages from traditional dense priors and recent end-to-end detectors. We hope it can serve as a new baseline and inspires researchers to revisit the complementarity between traditional methods and end-to-end detectors. The source code is publicly available at \url{https://github.com/jshilong/DDQ}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源