论文标题

匹配对的假设测试与最大平均差异缺少数据:连续葡萄糖监测的应用

Hypothesis testing for matched pairs with missing data by maximum mean discrepancy: An application to continuous glucose monitoring

论文作者

Matabuena, Marcos, Félix, Paulo, Ditzhaus, Marc, Vidal, Juan, Gude, Francisco

论文摘要

统计科学中经常存在的问题是如何正确处理匹配的配对观测值中缺少的数据。有大量的文献应对单变量案例。然而,测量生物系统的持续技术进步提高了解决更复杂数据的必要性,例如图形,字符串和概率分布等。为了填补这一空白,本文提出了最大平均差异(MMD)的新估计值,以处理与缺少数据的复杂匹配对。这些估计器可以在不同的缺失机制下检测数据分布的差异。这种方法的有效性得到了证明,并在广泛的模拟研究中进一步研究了,并提供了统计一致性的结果。在基于纵向人群的糖尿病研究中,来自连续葡萄糖监测的数据用于说明这种方法的应用。通过采用新的分布表示以及聚类分析,可以探索有关葡萄糖变化如何在五年内在分布水平变化的新临床标准。

A frequent problem in statistical science is how to properly handle missing data in matched paired observations. There is a large body of literature coping with the univariate case. Yet, the ongoing technological progress in measuring biological systems raises the need for addressing more complex data, e.g., graphs, strings and probability distributions, among others. In order to fill this gap, this paper proposes new estimators of the maximum mean discrepancy (MMD) to handle complex matched pairs with missing data. These estimators can detect differences in data distributions under different missingness mechanisms. The validity of this approach is proven and further studied in an extensive simulation study, and results of statistical consistency are provided. Data from continuous glucose monitoring in a longitudinal population-based diabetes study are used to illustrate the application of this approach. By employing the new distributional representations together with cluster analysis, new clinical criteria on how glucose changes vary at the distributional level over five years can be explored.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源