论文标题
使用平滑粒子流体动力学的气泡流和破裂波的大型涡流模拟
Large Eddy Simulations of bubbly flows and breaking waves with Smoothed Particle Hydrodynamics
论文作者
论文摘要
对于动荡的气泡流,在不同的自然现象的背景下,液体和气泡的多相模拟都非常昂贵。一个例子是断电,其中气泡强烈影响波冲击载荷,声学排放和大气 - 海洋传递,但除最简单的设置外,所有详细的模拟都是不可行的。另一种方法是仅解决大尺度,并模拟采用子分辨率封闭的小规模气泡。在这里,我们引入了一个大型涡流模拟(LES)平滑的颗粒流体动力学(SPH)方案,以模拟起泡流。连续的液相通过半密度等温可压缩的SPH框架解析。这与离散的拉格朗日气泡模型相结合。气泡和液体通过体积和动量交换,通过湍流闭合,气泡破裂和夹带以及自由表面相互作用模型相互作用。通过将气泡表示为单个颗粒,可以在其一生中跟踪它们,从而允许闭合模型以子分辨率波动,气泡变形,分裂和以整体形式的自由表面相互作用,从而考虑了发生这些事件的有限时间表。我们研究了两个流量:气泡羽和破裂,并与已发表的实验和数值数据找到密切的定量一致性。特别是,对于衰减波浪,我们的框架准确地预测了夹带气泡种群的Hinze量表,气泡尺寸分布和生长速率。这是SPH框架与离散气泡模型的第一个耦合,具有对波浪结构相互作用的成本有效模拟,并且对波浪冲击负载的更准确预测。
For turbulent bubbly flows, multi-phase simulations resolving both the liquid and bubbles are prohibitively expensive in the context of different natural phenomena. One example is breaking waves, where bubbles strongly influence wave impact loads, acoustic emissions, and atmospheric-ocean transfer, but detailed simulations in all but the simplest settings are infeasible. An alternative approach is to resolve only large scales, and model small scale bubbles adopting sub-resolution closures. Here we introduce a large eddy simulation (LES) Smoothed Particle Hydrodynamics (SPH) scheme for simulations of bubbly flows. The continuous liquid phase is resolved with a semi-implicit isothermally compressible SPH framework. This is coupled with a discrete Lagrangian bubble model. Bubbles and liquid interact via exchanges of volume and momentum, through turbulent closures, bubble breakup and entrainment, and free-surface interaction models. By representing bubbles as individual particles, they can be tracked over their lifetimes, allowing closure models for sub-resolution fluctuations, bubble deformation, breakup and free-surface interaction in integral form, accounting for the finite timescales over which these events occur. We investigate two flows: bubble plumes, and breaking waves, and find close quantitative agreement with published experimental and numerical data. In particular, for plunging breaking waves, our framework accurately predicts the Hinze scale, bubble size distribution, and growth rate of the entrained bubble population. This is the first coupling of an SPH framework with a discrete bubble model, with potential for cost effective simulations of wave-structure interactions and more accurate predictions of wave impact loads.