论文标题
在近乎临界的高斯田里诱导被困颗粒的振荡
Inducing oscillations of trapped particles in a near-critical Gaussian field
论文作者
论文摘要
我们研究了限制在两个空间分离的谐波电势中的两个颗粒的非平衡动力学,并线性耦合到相同的热波动标量场,这是一部用于光学捕获的胶体的卡通,接触,接触接近连续相过渡的介质。当将外部周期性驾驶应用于其中一个颗粒时,由于现场介导的有效相互作用,最终达到了非平衡周期性的态度,在该状态下,其运动同步了,这是实验中已经观察到的现象。我们充分表征了第二个粒子的非线性响应是驱动频率的函数,尤其是远离绝热状态,在该方向上可以假定野外可以立即放松。我们将扰动,分析解决方案与其绝热近似进行了比较,从而确定了后者有效性的限制,并定性地测试了针对数值模拟的预测。
We study the nonequilibrium dynamics of two particles confined in two spatially separated harmonic potentials and linearly coupled to the same thermally fluctuating scalar field, a cartoon for optically trapped colloids in contact with a medium close to a continuous phase transition. When an external periodic driving is applied to one of these particles, a nonequilibrium periodic state is eventually reached in which their motion synchronizes thanks to the field-mediated effective interaction, a phenomenon already observed in experiments. We fully characterize the nonlinear response of the second particle as a function of the driving frequency, and in particular far from the adiabatic regime in which the field can be assumed to relax instantaneously. We compare the perturbative, analytic solution to its adiabatic approximation, thus determining the limits of validity of the latter, and we qualitatively test our predictions against numerical simulations.