论文标题
评估通过轨迹预测为足球中队友创造得分机会
Evaluation of creating scoring opportunities for teammates in soccer via trajectory prediction
论文作者
论文摘要
评估足球运动员队友的个别运动对于评估队伍,侦察和粉丝参与至关重要。据说,在90分钟的比赛中,球员平均没有大约87分钟的球。但是,在不接球的情况下评估进攻球员并揭示运动如何为队友创造得分机会的贡献一直很困难。在本文中,我们通过将实际动作与通过轨迹预测产生的参考动作进行比较,评估了创建球外评分机会的玩家。首先,我们使用图形差异神经网络预测玩家的轨迹,该神经网络可以准确地模拟玩家之间的关系并预测长期轨迹。接下来,基于实际轨迹和预测轨迹之间修改后的外球评估指数的差异,我们评估实际运动与预测运动相比如何促进得分机会。为了进行验证,我们研究了专家一年中专业球队的所有比赛的年薪,目标和比赛的关系。结果表明,年薪和拟议的指标显着相关,这无法通过现有的指标和目标来解释。我们的结果表明,提出的方法是没有球的球员的指标,可以为队友创造得分机会。
Evaluating the individual movements for teammates in soccer players is crucial for assessing teamwork, scouting, and fan engagement. It has been said that players in a 90-min game do not have the ball for about 87 minutes on average. However, it has remained difficult to evaluate an attacking player without receiving the ball, and to reveal how movement contributes to the creation of scoring opportunities for teammates. In this paper, we evaluate players who create off-ball scoring opportunities by comparing actual movements with the reference movements generated via trajectory prediction. First, we predict the trajectories of players using a graph variational recurrent neural network that can accurately model the relationship between players and predict the long-term trajectory. Next, based on the difference in the modified off-ball evaluation index between the actual and the predicted trajectory as a reference, we evaluate how the actual movement contributes to scoring opportunity compared to the predicted movement. For verification, we examined the relationship with the annual salary, the goals, and the rating in the game by experts for all games of a team in a professional soccer league in a year. The results show that the annual salary and the proposed indicator correlated significantly, which could not be explained by the existing indicators and goals. Our results suggest the effectiveness of the proposed method as an indicator for a player without the ball to create a scoring chance for teammates.