论文标题
中心通道提取的几何动机初级镜分解
Geometrically-Motivated Primary-Ambient Decomposition With Center-Channel Extraction
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A geometrically-motivated method for primary-ambient decomposition is proposed and evaluated in an up-mixing application. The method consists of two steps, accommodating a particularly intuitive explanation. The first step consists of signal-adaptive rotations applied on the input stereo scene, which translate the primary sound sources into the center of the rotated scene. The second step applies a center-channel extraction method, based on a simple signal model and optimal in the mean-squared-error sense. The performance is evaluated by using the estimated ambient component to enable surround sound starting from real-world stereo signals. The participants in the reported listening test are asked to adjust the audio scene envelopment and find the audio settings that pleases them the most. The possibility for up-mixing enabled by the proposed method is used extensively, and the user satisfaction is significantly increased compared to the original stereo mix.