论文标题

Riemann-Hilbert的一种方法,可以在线上使用全球解决方案的全球解决方案

A Riemann-Hilbert approach to existence of global solutions to the Fokas-Lenells equation on the line

论文作者

Cheng, Qiaoyuan, Fan, Engui

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We obtain the the existence of global solutions to the Cauchy problem of the Fokas-Lenells (FL) equation on the line \begin{align} &u_{xt}+αβ^2u-2iαβu_x-αu_{xx}-iαβ^2|u|^2u_x=0,\nonumber \\ &u(x,t=0)=u_0(x), \nonumber \end{align} where without the small-norm assumption on initial data $u_0(x)\in H^3(\mathbb{R})\cap H^{2,1}(\mathbb{R})$. Our main technical tool is the inverse scattering transform method based on the representation of a Riemann-Hilbert (RH) problem associated with the above Cauchy problem. The existence and the uniqueness of the RH problem is shown via a general vanishing lemma. The spectral problem associated with the FL equation is changed into an equivalent Zakharov-Shabat-type spectral problem to establish the RH problems on the real axis. By representing the solutions of the RH problem via the Cauchy integral protection and the reflection coefficients, the reconstruction formula is used to obtain a unique local solution of the FL equation. Further, the eigenfunctions and the reflection coefficients are shown Lipschitz continuous with respect to initial data, which provides a priori estimate of the solution to the FL equation. Based on the local solution and the uniformly priori estimate, we construct a unique global solution in $H^3(\mathbb{R})\cap H^{2,1}(\mathbb{R})$ to the FL equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源