论文标题

粗粒状状态空间网络的持续同源

Persistent Homology of Coarse Grained State Space Networks

论文作者

Myers, Audun D., Chumley, Max M., Khasawneh, Firas A., Munch, Elizabeth

论文摘要

这项工作致力于对复杂过渡网络进行动态状态检测的拓扑分析。过渡网络是由时间序列数据形成的,它们利用图理论工具来揭示有关基础动态系统的信息。但是,传统工具可能无法总结此类图中存在的复杂拓扑。在这项工作中,我们利用拓扑数据分析的持续同源性来研究这些网络的结构。我们使用粗粒度状态空间网络(CGSSN)和拓扑数据分析(TDA)与两种最新方法进行对比的动态状态检测与TDA结合使用TDA的两种状态方法和持久同源性在信号的时间delay嵌入中的标准应用。我们表明,CGSSN捕获了有关基础动力系统动态状态的丰富信息,与OPN相比,动态态检测和噪声鲁棒性的显着改善证明了这一点。我们还表明,由于CGSSN的计算时间并非线性取决于信号的长度,因此比将TDA应用于时间序列的时间段嵌入更有效。

This work is dedicated to the topological analysis of complex transitional networks for dynamic state detection. Transitional networks are formed from time series data and they leverage graph theory tools to reveal information about the underlying dynamic system. However, traditional tools can fail to summarize the complex topology present in such graphs. In this work, we leverage persistent homology from topological data analysis to study the structure of these networks. We contrast dynamic state detection from time series using a coarse-grained state-space network (CGSSN) and topological data analysis (TDA) to two state of the art approaches: ordinal partition networks (OPNs) combined with TDA and the standard application of persistent homology to the time-delay embedding of the signal. We show that the CGSSN captures rich information about the dynamic state of the underlying dynamical system as evidenced by a significant improvement in dynamic state detection and noise robustness in comparison to OPNs. We also show that because the computational time of CGSSN is not linearly dependent on the signal's length, it is more computationally efficient than applying TDA to the time-delay embedding of the time series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源