论文标题

全元预测:将卫星观测与天空图像结合起来,以改善时间内太阳能预测

Omnivision forecasting: combining satellite observations with sky images for improved intra-hour solar energy predictions

论文作者

Paletta, Quentin, Arbod, Guillaume, Lasenby, Joan

论文摘要

将间歇性可再生能源的整合到大量的电网中是具有挑战性的。旨在解决这一困难的良好方法涉及即将到来的能源供应可变性以适应网格响应的预期。在太阳能中,可以在全天空摄像机(前方30分钟)和卫星观测(提前6小时)的不同时间尺度上预测,由遮挡云的短期产量变化可以预测。在这项研究中,我们将这两种互补的观点整合在单个机器学习框架中的云覆盖层上,以改善预测辐照度(最多60分钟)的辐照度。确定性和概率预测均在不同的天气条件(晴朗,阴天,阴天)以及不同的输入配置(天空图像,卫星观测和/或过去的辐照度值)中进行评估。我们的结果表明,混合模型在清晰的条件下有益于预测,并改善了长期预测。这项研究为将来的新颖方法奠定了基础,即在单个学习框架中将天空图像和卫星观测结合起来,以推动太阳现象。

Integration of intermittent renewable energy sources into electric grids in large proportions is challenging. A well-established approach aimed at addressing this difficulty involves the anticipation of the upcoming energy supply variability to adapt the response of the grid. In solar energy, short-term changes in electricity production caused by occluding clouds can be predicted at different time scales from all-sky cameras (up to 30-min ahead) and satellite observations (up to 6h ahead). In this study, we integrate these two complementary points of view on the cloud cover in a single machine learning framework to improve intra-hour (up to 60-min ahead) irradiance forecasting. Both deterministic and probabilistic predictions are evaluated in different weather conditions (clear-sky, cloudy, overcast) and with different input configurations (sky images, satellite observations and/or past irradiance values). Our results show that the hybrid model benefits predictions in clear-sky conditions and improves longer-term forecasting. This study lays the groundwork for future novel approaches of combining sky images and satellite observations in a single learning framework to advance solar nowcasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源