论文标题
有限的共轭类和分裂确切的科链络合物
Finite conjugacy classes and split exact cochain complexes
论文作者
论文摘要
我们研究了等距组对(超级)反射式巴拉赫空间的共同点,重点是有限的共轭类别和科班复合物的精确性之间的关系。特别是,我们表明,如果一个均匀的凸Banach模块在表演组的FC-中心下没有几乎不变的向量,则相关的Cochain复合物是精确的。建立了与Bader -Furman -Gelander -Gelander -Monod,Bader -Rosendal -Sauer和Nowak有关的其他类似刚性结果。
We study the cohomology of isometric group actions on (super) reflexive Banach spaces with a focus on the relation between finite conjugacy classes and split exactness of cochain complexes. In particular, we show that, if a uniformly convex Banach module has no almost invariant vectors under the FC-centre of the acting group, then the associated cochain complex is split exact. Other similar rigidity results are established that are related to prior work of Bader - Furman - Gelander - Monod, Bader - Rosendal - Sauer and Nowak.