论文标题
强烈自我吸收的C*代数和某些物理应用的拓扑T偶偶。
Topological T-duality for bundles of strongly self-absorbing C*-algebras and some physical applications
论文作者
论文摘要
我们将拓扑T二维的$ c^{\ ast} - $代数形式主义扩展到了强烈自我消除的本地琐碎捆绑包的代数,$ c^{\ ast} - $代数和较大的弦理论二元。我们认为,从物理上讲,这对应于具有拓扑非平凡的无源源性Ramond-Ramond Flux的II型字符串理论的通量背景。我们为$ c^{\ ast} - $ $ k- $理论展示了一张$ c^{\ ast} - $代数参与此广义二元性的两边。我们计算一些例子。我们特别详细地讨论了上述形式主义的物理相关性,我们认为上述形式主义模型串起了在诸如费米米金t偶尔和时间表t二维之类的通量背景中发现的理论树级二元性。
We extend the $C^{\ast}-$algebraic formalism of Topological T-duality to section algebras of locally trivial bundles of strongly self-absorbing $C^{\ast}-$algebras and to a larger class of String Theoretic dualities. We argue that physically this corresponds extending Topological T-duality to Flux Backgrounds of Type II String Theory which possess topologically nontrivial sourceless Ramond-Ramond flux. We demonstrate a map in $K-$theory for the $C^{\ast}-$algebras involved in both sides of this generalized duality. We calculate a few examples. We discuss the physical relevance of the above formalism in some detail, in particular, we argue that the above formalism models String Theoretic tree-level dualities found in such Flux Backgrounds such as Fermionic T-duality and Timelike T-duality.