论文标题

使用心理健康知识指导语音过滤的咨询摘要

Counseling Summarization using Mental Health Knowledge Guided Utterance Filtering

论文作者

Srivastava, Aseem, Suresh, Tharun, Peregrine, Sarah, Lord, Akhtar, Md. Shad, Chakraborty, Tanmoy

论文摘要

心理治疗干预技术是治疗师和患者之间的多方面对话。与一般的临床讨论不同,心理治疗的核心成分(即症状)很难区分,因此成为一个复杂的问题,以稍后总结。结构化的咨询对话可能包含有关症状,心理健康问题病史或发现患者行为的讨论。它还可能包含与临床摘要无关的讨论填充单词。我们将结构化心理治疗的这些要素称为咨询组成部分。在本文中,目的是心理健康咨询的摘要,以基于领域知识并帮助临床医生迅速收集意义。在注释了每次对话的咨询组件的12.9k话语和参考摘要之后,我们创建了一个新的数据集。此外,我们建议消费是一种新颖的咨询组件指导摘要模型。消费经历三个独立模块。首先,为了评估抑郁症状的存在,它使用患者健康问卷(PHQ-9)过滤了话语,而第二和第三模块的目的是对咨询组件进行分类。最后,我们提出了针对特定问题的心理健康信息捕获(MHIC)评估指标,用于咨询摘要。我们的比较研究表明,我们改善了性能并产生凝聚力,语义和连贯的摘要。我们全面分析了生成的摘要,以研究心理治疗元素的捕获。摘要的人类和临床评估表明,消费会产生质量摘要。此外,心理健康专家验证了消费的临床可接受性。最后,我们讨论了现实世界中心理健康咨询摘要的独特性,并在Mathic.ai的支持下显示了其在线应用程序上的部署的证据

The psychotherapy intervention technique is a multifaceted conversation between a therapist and a patient. Unlike general clinical discussions, psychotherapy's core components (viz. symptoms) are hard to distinguish, thus becoming a complex problem to summarize later. A structured counseling conversation may contain discussions about symptoms, history of mental health issues, or the discovery of the patient's behavior. It may also contain discussion filler words irrelevant to a clinical summary. We refer to these elements of structured psychotherapy as counseling components. In this paper, the aim is mental health counseling summarization to build upon domain knowledge and to help clinicians quickly glean meaning. We create a new dataset after annotating 12.9K utterances of counseling components and reference summaries for each dialogue. Further, we propose ConSum, a novel counseling-component guided summarization model. ConSum undergoes three independent modules. First, to assess the presence of depressive symptoms, it filters utterances utilizing the Patient Health Questionnaire (PHQ-9), while the second and third modules aim to classify counseling components. At last, we propose a problem-specific Mental Health Information Capture (MHIC) evaluation metric for counseling summaries. Our comparative study shows that we improve on performance and generate cohesive, semantic, and coherent summaries. We comprehensively analyze the generated summaries to investigate the capturing of psychotherapy elements. Human and clinical evaluations on the summary show that ConSum generates quality summary. Further, mental health experts validate the clinical acceptability of the ConSum. Lastly, we discuss the uniqueness in mental health counseling summarization in the real world and show evidences of its deployment on an online application with the support of mpathic.ai

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源