论文标题
传染病传播的隔室模型的结构可识别性受数据类型的影响
Structural identifiability of compartmental models for infectious disease transmission is influenced by data type
论文作者
论文摘要
如果未确认模型可识别性,传染病传播模型的推论可能不会可靠,因此它们可能会导致误导性建议。结构性可识别性分析特征是在给定模型结构的情况下,是否可以为所有未知模型参数获得唯一的解决方案。在这项工作中,我们研究了某些用于传染病传播的典型确定性隔室模型的结构可识别性,重点是被认为是模型输出对未知模型参数(包括初始条件)的可识别性的数据类型的影响。我们定义了26个模型版本,每个版本都具有基础隔室结构和被视为模型输出的数据类型的唯一组合。研究了四种隔离模型结构和疾病监测中的三种常见数据类型(发病率,患病率和检测到的载体计数)。某些参数的结构可识别性因模型输出的类型而异。通常,与单个数据类型作为输出的模型相比,具有多种数据类型的模型具有结构可识别的参数。这项研究强调了对数据类型进行仔细考虑的重要性,这是与隔离性传染病传播模型的推理过程中不可或缺的一部分。
If model identifiability is not confirmed, inferences from infectious disease transmission models may not be reliable, so they might lead to misleading recommendations. Structural identifiability analysis characterizes whether it is possible to obtain unique solutions for all unknown model parameters, given the model structure. In this work, we studied the structural identifiability of some typical deterministic compartmental models for infectious disease transmission, focusing on the influence of the data type considered as model output on the identifiability of unknown model parameters, including initial conditions. We defined 26 model versions, each having a unique combination of underlying compartmental structure and data type(s) considered as model output(s). Four compartmental model structures and three common data types in disease surveillance (incidence, prevalence and detected vector counts) were studied. The structural identifiability of some parameters varied depending on the type of model output. In general, models with multiple data types as outputs had more structurally identifiable parameters, than did models with a single data type as output. This study highlights the importance of a careful consideration of data types as an integral part of the inference process with compartmental infectious disease transmission models.